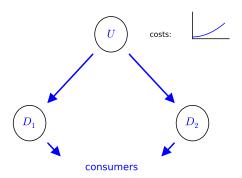
## Segal and Whinston


# Robust Predictions for Bilateral Contracting with Externalities

Christoph Schottmüller

October 18, 2010



#### Motivation



- results depend on belief structure off the equilibrium path
  What predictions can be made if one allows for arbitrary beliefs?
- more flexible contracts



#### Game

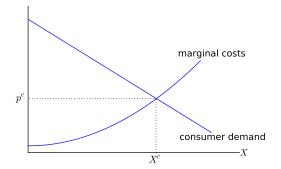
U has increasing and convex costs in total quantity; each  $D_i$  has zero costs

- **1** U proposes a menu  $M_i$  to each retailer  $D_i$
- each retailer accepts or rejects (only observing his offer!)
- **3** U chooses a point  $(x_i, t_i)$  from  $M_i$  (if  $D_i$  accepted and  $M_i$  has more than one point)
- each retailer puts  $x_i$  on the market and gets  $p(X)x_i$  where  $X = \sum_i x_i$

What is a menu?

example (linear menu): 
$$\{(x_i, p * x_i) : x_i \in [\underline{x}_i, \overline{x}_i]\}$$

Why menus?


U's choice depends on  $X_{-i} \Rightarrow$  choice reveals private information (screening)



## Definition: acceptable menu

Definition:  $M_i$  is an acceptable menu if  $D_i$  makes non-negative profits no matter what  $X_{-i}$  is.

Example:



The menu  $((x_i, p^c * x_i) : x_i \in [0, X^c])$  is acceptable.

#### Results

- Property 1: each retailer makes non-negative profits
- Property 2: The joined profits of U and any group of retailers cannot be increased by offering acceptable menus to these retailers.

Proposition: Property 1 and 2 are necessary and sufficient for a weak perfect Bayesian Nash equilibrium.

Proposition: If the number of retailers goes to  $\infty$ , the total quantity approaches the perfectly competitive quantity  $X^c$ .

- Idea:
  - ullet suppose  $X < X^c$
  - take a retailer  $D_i$  with very small  $x_i$ , say  $(x_i, t_i) = (0, 0)$  for simplicity
  - ullet offer the competitive menu to retailer  $D_i$

### Discussion

- menus in practice
- costs and consumer demand are common knowledge but no contracting on market price
- externalities on non-traders

Where to go from here?

- middle way: sharper predictions by robustness to some "reasonable" beliefs
- institutions to "solve" the problem  $X > X^m$
- beliefs in the lab

## your comments



## Institutions to solve the problem

#### Trade association

- U offers  $(x_i, t_i)$  to each retailer  $D_i$
- ${f 2}$  U informs the trade association about the quantity X it will trade
- $\odot$  trade association informs its members (i.e. retailers) of X
- lacktriangledown retailers accept/reject offers and inform trade agency about  $x_i$
- ullet if the total traded quantity deviates from the announced  $X,\ U$  has to pay a huge fine for misreporting

Repeated interaction

Exclusive contracts



