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1. Two specific types of bias distributions

To find out how polarized biases need to be so that segregation is optimal and an equi-
librium, we can consider two stylized cases. First, we will consider biases that are evenly
distributed on an interval of the real line. We can think of this case as having “zero polar-
ization”, whereas clustering of biases around certain values exhibits positive polarization.
Second, we consider biases that are tightly clustered around a central value – we could
think of this as “negative polarization”.

1.1. Uniformly distributed biases

We will show the following result:

Result 1. Let bi = (i − 1) ∗ k/(n − 1) for i = 1, . . . , n. Then the welfare optimal room
allocation assigns either all players to one single room or all but one extreme player to
the same room. Assigning all players to the same room is also an equilibrium.

Intuitively, we can start by considering the fully integrated room, in which some people
whose biases are close to the overall average tell the truth, and the rest babble and learn
from the truth-tellers. Since biases are evenly distributed by assumption, there is little
welfare to be gained by moving the bias average around by allocating people to another
room. (This can only work because of integer effects – i.e. because changes in the
average bias have discrete effects on who tells the truth – which is precisely what gives
us the exceptions in the second half of the proposition.) Any room that includes only
part of the players will have a shorter truth-telling interval, which (again, absent integer
effects) means fewer truth-tellers. But if we cannot increase the number of truth-tellers by
segregating into smaller rooms, then the fully integrated room must be welfare-optimal
and also an equilibrium: Every player receives the highest possible number of truthful
messages while the number of players having their own signal in addition to this number
of messages is also maximal. The remainder of this section shows this result formally.

Proposition 9. Let bi = (i− 1) ∗ k/(n− 1) for i = 1, . . . , n. Then one single room with all
players is both welfare optimal and an equilibrium if either

b−
[
k/2− (p− 1/2)n− 1

n

]
≤ k

2(n− 1)
(1)

or
k(1− 1/n)/2− (p− 1/2)n− 2

n− 1
> b− k

n− 1
. (2)

If neither of these two conditions holds, isolating player n in one room and all other
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players in one room is welfare optimal. This is only an equilibrium if

α ≥
bn−1

n
(2p− 1)/(k/(n− 1))c − 1

n− 2
. (3)

Proof of proposition 9: Theorem 1 states that in the most informative equilib-
rium of the messaging subgame players in room R will tell the truth if and only if
bi ∈

[
b− nR−1

nR
(p− 1

2), b+ nR−1
nR

(p− 1
2)
]
. If this interval covers [0, k], then one room leads

to truthtelling by all players and one single room is clearly optimal. In the remainder
of this proof, we therefore assume that this is not the case. The length of the interval[
b− nR−1

nR
(p− 1

2), b+ nR−1
nR

(p− 1
2)
]

is nR−1
nR

(2p − 1). The number of players telling the
truth in any room is consequently bounded from above by bnR−1

nR
(2p− 1)/(k/(n− 1))c+ 1

as the players’ biases are equally spaced with distance k/(n − 1) between two consecu-
tive players’ biases. This bound may not be attained by any feasible room due to the
discrete nature of the problem. More specifically, if we take the fully integrated room,
then the number of truthtelling players will be either bn−1

n
(2p − 1)/(k/(n − 1))c + 1 or

bn−1
n

(2p− 1)/(k/(n− 1))c.
Let t∗ be the maximal number of truthtelling players in any possible room. From the

above, it is clear that t∗ ∈
{
bn−1

n
(2p− 1)/(k/(n− 1))c+ 1, bn−1

n
(2p− 1)/(k/(n− 1))c

}
.

Suppose t∗ is the number of truthtelling players if all players are in the same room. Then
the number of pieces of information generated in this room is t∗n+n−t∗. We will show that
in this case no other room configuration generates more pieces of information: The total
number of pieces of information in r rooms is:

∑
R tRnR+nR−tR =

∑
R tR(nR−1)+nR ≤∑

R t
∗(nR − 1) + nR = t∗(n− r) + n ≤ t∗n+ n− t∗. By proposition 1, one big room with

all players is then welfare optimal if this leads to t∗ truthtelling players.
Next consider the situation where one integrated room with all players leads not to

t∗ but only to t∗ − 1 truthtelling players. Suppose that there is some room R∗ with
n − 1 players in which t∗ players are truthtelling. We show that in this case the room
configuration (R∗, {1, . . . , n} \ R∗) is welfare optimal. This will lead to t∗(n − 1) + n −
1 − t∗ + 1 = t∗(n − 2) + n pieces of information. The big integrated room leads to
only (t∗ − 1)n + n − t∗ + 1 = t∗(n − 1) < t∗(n − 1) − t∗ + n pieces of information
and is therefore welfare inferior. Any other room configuration with r rooms leads to∑

R tRnR+nR−tR =
∑

R tR(nR−1)+nR ≤
∑

R t
∗(nR−1)+nR = t∗(n−r)+n ≤ t∗(n−2)+n

pieces of information which is also (weakly) less than (R∗, {1, . . . , n} \R∗). Hence, in this
case (R∗, {1, . . . , n} \R∗) is welfare optimal.

Finally, we show that the conditions in the proposition lead to either of the two just
described cases. Note that in the fully integrated room b̄ = k/2. Hence, condition
(1) states that the distance from the lowest player’s bias who tells the truth to the lower
boundary of the truthtelling interval is less than 1/2 the distance between two consecutive
players’ biases. By symmetry of the truthtelling interval around b̄ and the equal spacing
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of biases, this is also true for the distance of the highest bias player telling the truth and
the upper boundary of the truthtelling interval. First, let (1) hold strictly. Then it is clear
that shifting the truthtelling interrval (by changing b̄) cannot lead to more players being
truthtelling. Furthermore, the length of the truthtelling interval is strictly decreasing in
the number of players in the room. Hence, in no other room can there be more truthtelling
players than in the fully integrated room. This holds also if (1) holds with equality as the
length of the truthtelling inequality is strictly decreasing in the number of players in the
room. Consequently, t∗ is achieved by the fully integrated room and the argument two
paragraphs above shows that then the fully integrated room is welfare optimal.

Now consider the case where (1) does not hold. Start from the fully integrated room.
If (1) does not hold, shifting the truthtelling interval by k/(2(n − 1)) down (by – for
now magically – reducing b̄ by this amount), will imply that this interval contains 1
more player than in the fully integrated room. Furthermore, the distance of this lowest
truthtelling player after the shift to the lower boundary of the truthtelling interval will be
less than k/(2(n− 1)) by the assumption that (1) did not hold. Now note that removing
player n from the fully integrated room will reduce b̄ by exactly k/(2(n − 1)) (from k/2
to (k − k/(n − 1))/2). But note that removing this player also implies that nR = n − 1
and therefore the length of the truthtelling interval is reduced. Condition (2) states that
due to the shrinking of the interval when moving from n to n− 1 players the one player
whose truthtelling was gained by shifting the interval down is lost again. Furthermore,
the“shrinking”occurs at the upper as well as the lower boundary to the same extent. This
implies that also at the upper boundary one truthtelling player is lost due to the shrinking
(while the shifting did not lose anyone as (1) was violated by assumption). Consequently,
the room without player n will have one less truthtelling player than the fully integrated
room if (1) is violated and (2) holds. In this case, no room with n−1 (or less) players can
have more truthtelling players than the fully integrated room and therefore t∗ is attained
in the fully integrated room. Consequently, the fully integrated room is by the results
above welfare optimal.

If neither (1) nor (2) holds, then the “shifting” argument above implies that the room
allocation ({1, . . . , n−1}, {n}) leads to one more truthtelling player in R∗ = {1, . . . , n−1}
than in the fully integrated room. Consequently, t∗ is attained in R∗ and ({1, . . . , n −
1}, {n}) is welfare optimal by the results above.1

In terms of equilibrium, it is immediate that no player wants to deviate from the fully
integrated room by isolating himself as self-isolation leads to less information for himself
and no more information for other players. The same argument applies for players in
room R∗ in case (1) and (2) are violated. However, the isolated player might have an
incentive to join R∗: This would reduce the amount of information as only t∗ − 1 instead

1It should be noted that similar arguments as above, with an upward instead of a downward shift,
lead to the optimality of ({1}, {2, . . . , n}) which will also attain t∗ if (1) and (2) are violated.

4



of t∗ players would be truthtelling in the resulting fully integrated room reducing the
number of pieces information of all other players in this room from t∗(n− 1) + n− 1− t∗

to (t∗ − 1)(n − 1) + n − t∗. However, the deviating player would gain more information
for himself, i.e. the number of pieces of information he observes is t∗ instead of 1. From
7, it follows that the deviation is profitable if and only if α < (t∗ − 1)/(n− 2). Note that
t∗ = bn−1

n
(2p − 1)/(k/(n − 1))c in the here analyzed case where one integrated room is

not optimal. This gives the condition in the proposition.

1.2. Symmetrically single peaked bias distribution

We now move to symmetrically, single peaked distribution of biases: Assume that biases
are on an equally spaced grid 0, d, 2d, . . . ,Kd for some d > 0 and K ∈ N. The number of
players with bias bi = kd is increasing up to Kd/2 and decreasing thereafter. Furthermore,
we assume that the number of players with bias kd equals the number of players with bias
(K − k)d for k = 0, 1, . . . , bK/2c.

To state our proposition we need the following notation: Let k be the lowest k such
that kd ≥ Kd/2− (p− 1/2)(n− 1)/n and let k̄ be the highest k such that kd ≤ Kd/2 +
(p−1/2)(n−1)/n. Note that due to the discreteness of the grid and following theorem 1,
the truthtelling interval in a fully integrated room will cover all players with bi ∈ [kd, k̄d].

Proposition 10. With a symmetric, single peaked distribution of biases, one room con-
taining all players is welfare optimal and also an equilibrium if

k̄d− kd+ d > (2p− 1)n− 2
n− 1

. (4)

Proof of proposition 10: Theorem 1 states that in the most informative equilib-
rium of the messaging subgame players in room R will tell the truth if and only if
bi ∈

[
b− nR−1

nR
(p− 1

2), b+ nR−1
nR

(p− 1
2)
]
. If this interval covers [0, Kd], then one room

leads to truthtelling by all players and one single room is clearly optimal. In the remain-
der of this proof, we therefore assume that this is not the case. Note that – holding b̄

fixed – the length of the interval is increasing in nR. If we turn to the case of one fully in-
tegrated room, then the truthtelling interval is

[
Kd/2− n−1

n
(p− 1

2), Kd/2 + n−1
n

(p− 1
2)
]

as b̄ = Kd/2. We will first show the result under a condition slightly stronger than (4),
namely under the condition

k̄d− kd+ d > (2p− 1)n− 1
n

. (5)

Condition (5) states that the length of the truthtelling interval is less than k̄ − k + d.
(Note that the length of the truthtelling interval is weakly larger than k̄d− kd due to the
discrete grid on which biases are distributed.) This implies that the truthtelling interval
would not cover more grid points if it was moved up or down while keeping its length

5



constant. As the truthtelling interval is shorter for any other room (because of nR < n)
and the distribution of biases is single-peaked, this implies that there is no room in which
more players are truthtelling than in the fully integrated room.

The same conclusion follows if (4) holds instead of (5): (4) states that the length
of the truthtelling interval in any room different from the fully integrated room (which
therefore contains at most n − 1 players) is less than k̄d − kd + d which again implies
that the truthtelling interval of such a room cannot cover more grid points than the
fully integrated room and by single peakedness it can therefore also not contain more
truthtelling players.

Let t∗ be the maximal number of truthtelling players in any possible room. From the
above, t∗ is attained by the fully integrated room if (4) holds. In this case, the number of
pieces of information generated in the fully integrated room is t∗n+ n− t∗. We will show
that no other room configuration generates more pieces of information: The total number
of pieces of information in r rooms is:

∑
R tRnR + nR − tR =

∑
R tR(nR − 1) + nR ≤∑

R t
∗(nR − 1) + nR = t∗(n− r) + n ≤ t∗n+ n− t∗. By proposition 1, one big room with

all players is therefore welfare optimal if (4) holds.
In case a single fully integrated room is welfare maximal it is also an equilibrium:

Unilateral self-isolation would lead to less information for the deviating player and also
– by welfare optimality of the fully integrated room – to less information over all. By 3,
the deviation is therefore unprofitable.

2. Example: Too much segregation in equilibrium

In the case of two bias groups, we have shown that the welfare-optimal equilibrium room
allocation is either the overall welfare-optimum, or has too little segregation compared to
it. If there are three or more bias groups, this is not generally true anymore – now it is
possible that the welfare-optimal equilibrium involves too much segregation compared to
the welfare-optimum. This can occur when a player wants to deviate from the welfare-
optimum to another room where he can learn more and thereby destroys the truth-telling
incentives of people in the room that he is leaving. The following paragraphs provide an
example for such a situation.

Consider a bias configuration in which 13 people have bias b1 = −1000, 10 people
have bias b2 = 0 and 2 people have bias b3 = 500. We can easily see that there exists no
possible room with members of exactly two bias groups in which anyone tells the truth.
Even in rooms that involve all three bias groups, no one with biases b1 and b3 will ever
tell the truth. The only way to get anyone with bias 0 to tell the truth in a mixed room
is to create a room with one person with bias b1, two people with bias b3 and an arbitrary
number of people with bias 0. This leads us to the welfare-optimal room allocation: Room
1 consists of 12 people with bias b1 and generates 144 pieces of information, and room 2
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contains everybody else and generates 133 pieces of information, for a total
∑
ζi = 277.

For low α, this allocation is not an equilibrium: The person with bias b1 in room 2 can
change to room 1 and have 13 pieces of information instead of 11.

Now consider the room allocation where bias groups are fully segregated: This gener-
ates 169+100+4 = 273 pieces of information and is also an equilibrium: No one can learn
anything by switching to another room. Hence, this is the welfare-optimal equilibrium,
while the first allocation we described is welfare-optimal – which means that there is too
much segregation in the welfare-optimal equilibrium. (Note that this example is generic
in the sense that we could find an open ball of bias configurations around this particular
bias configuration in which our conclusions remain valid.)

3. Uncertainty

3.1. Main results and intuition

Let all biases bi be randomly and independently distributed on R according to distribution
Fi. Each player observes his own bias bi, but only knows the distributions of the biases
of other players. Let bei =

∫∞
−∞ bi dFi be the expected value of bi. This can be thought of

as a generalization of the paper’s main model, in which all biases were always identical
to their expected value. When we talk about “introducing” or “adding” uncertainty in
this context, we think of starting with the model in which all biases are known with
certainty, and replacing each bias with a bias distribution that has the same expected
value. Throughout this section, we will be comparing across distributions that have
the same expected value. The following paragraphs intuitively analyze the model with
uncertainty; the corresponding formal statements and analysis are in section 3.2 below.

To find the messaging equilibria within a room, we need to consider i’s problem of
choosing a messagemi after observing bi and σi, but only knowing Fj for all j ∈ Ri. We can
show that this problem is very similar to knowing all biases with certainty. In particular,
recall that i’s willingness to tell the truth depended only on the distance between bi and
the average of all other bj’s in the model with certainty. This insight applies analogously
to a model in which all biases are unknown: Now i cares only about the difference between
bi and the average of all bej , i.e. the expected values of other people’s bias.

A difference in describing equilibria with uncertainty arises since i may want to tell
the truth for some values of bi and not for others, and the other players are unsure about
bi when interpreting mi. Their belief about how likely i is to tell the truth hence depends
on how bi is distributed. For each possible probability with which i tells the truth, there
exists an interval around

∑
j∈Ri,j 6=i b

e
j

nRi
−1 such that i wants to tell the truth if the realized bi

lies within this interval. Since the distribution of bi is common knowledge, that gives us
the following equilibrium condition: The beliefs of all other players about i’s probability
of truth-telling need to give rise to a truth-telling interval for i around the average of all
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bj such that i wants to tell the truth with exactly the probability with which the other
players believe that he tells the truth.

This translates into a slightly generalized version of theorem 1 which, for any dis-
tribution of bi, gives us the highest probability with which i can tell the truth in any
equilibrium. Intuitively, the more concentrated Fi is around

∑
j∈Ri,j 6=i b

e
j

nRi
−1 , the higher the

probability with which i can tell the truth in equilibrium. Interestingly, only the proba-
bility mass of Fi that is sufficiently close to

∑
j∈Ri,j 6=i b

e
j

nRi
−1 matters; whether or not bei itself is

close to the average or not is not directly relevant for whether i is able to tell the truth
in equilibrium.

In particular, this means that we can choose any set of expected biases, regardless of
how close they are to each other, and construct bias distributions such that none of the
players ever wants to tell the truth to anyone in any room allocation. This means that for
any bias configuration, uncertainty has the potential to completely destroy all chances of
creating a room in which information is exchanged.

Proposition 11. Take a set of n players with biases {b1, b2, . . . , bn} such that there exists
a room allocation in which some (or all) players tell the truth. Then there exists a set
of probability distributions {F1, F2, . . . , Fn} of biases with expected values {b1, b2, . . . , bn}
such that in any room allocation of the n players, no player will tell the truth in any
equilibrium. (Proof on page 14.)

This is, of course, a very stark result. Uncertainty need not always destroy communi-
cation. It can, in fact, make communication possible where it was previously impossible,
by moving probability mass of bi’s distribution closer to the average of other biases. This
effect, however, is more limited and can never lead to full truth-telling if there is no full
truth-telling in a model with certain biases and identical expected values.

Proposition 12. If bi is such that there exists no equilibrium in room Ri where i tells the
truth, there exists a distribution Fi with expected value bei = bi such that there exists an
equilibrium in Ri where i tells the truth with positive probability. However, there exists no
Fi such that i tells the truth with probability 1 in any equilibrium. (Proof on page 14.)

While uncertainty can make some truth-telling possible where it was not possible with
certainty, large amounts of uncertainty will always destroy any truth-telling and make
all messages arbitrarily uninformative unless they preserve sufficient probability mass in
the neighborhood of

∑
j∈Ri,j 6=i b

e
j

nRi
−1 . Because of the large space of possible distributions and

possible orderings on uncertainty, we show this result in two ways. First, we consider any
continuous bias distribution and show that by “stretching” it, any equilibrium will become
arbitrarily uninformative. Then we consider discrete bias distributions with bounded
support, and show that any way of increasing the variance of such a distribution will
likewise eventually erode all informative equilibria. In the following propositions, µlji is
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j’s belief about θi, given that i has sent the signal ml; the other expressions involving µ
are defined analogously.

Proposition 13. Let F be a continuous distribution function that is continuous at its
expected value bei and symmetric around bei . Let F κ(x) = F (bei + κ(x − bei )), i.e. bi = bei

almost surely for limκ→∞ F
κ. For any F and ε > 0, there exists a κ̄ > 0 such that

µhji − µlji < ε if Fi = F κ and κ ≤ κ̄. (Proof on page 15.)

Proposition 14. Fix the expected bias bei of all players in a given room and a bounded
support for all bias distributions Fi. Assume that there is at least one element in the
support that is smaller than

∑
j∈Ri,j 6=i b

e
j

nRi
−1 − (2p− 1) and at least one element that is larger

than
∑

j∈Ri,j 6=i b
e
j

nRi
−1 + (2p− 1). Then for each ε > 0 there exists some σFi

such that for all
such Fi with Var (bi) ≥ σFi

2, µhji − µlji ≤ ε. (Proof on page 15.)

bib1 be2 b3 b4 be5b

Interval

Figure 1: An illustration of propositions 12 to 14. (The biases are identical to the one in
figure 1 of the paper except that b2 and b5 are now uncertain.)

Figure 1 illustrates propositions 12 to 14. The bias configuration is identical to the
one in figure 1 on page 12, except that there is some mean-preserving uncertainty about
the biases of players 2 and 5, whose biases are now distributed according to a bell-shaped
distribution function. Under certainty, player 2 was telling the truth, but is now only
telling the truth if his realized b2 falls within the interval (proposition 13). Player 5 was
babbling, but will now sometimes send an informative message if his realized bias is close
enough to b (proposition 12).2

These results already contain statements about room choice with uncertainty: If truth-
telling is greatly reduced or becomes impossible, there is not much to be gained from being
in one room. Of course, truth-telling between people with identical bias distributions is
not necessarily easier – note that proposition 11 contained no assumption that people
differ in how their biases are distributed. So are the effects of uncertainty simply to make
communication hard in general? Not necessarily. Consider a model where full integration
is welfare-optimal and an equilibrium if biases are known. We can show that for any such
model, uncertainty can cause segregation between groups to become Pareto-superior to
integration, and such segregation may also be an equilibrium of the room choice game.

2This graphic is meant as an illustration and ignores the fact that, while the interval’s length re-
mains constant, its precise location may shift depending on the exact beliefs of the receiving players in
equilibrium.
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Proposition 15. Let the number of players be weakly larger than 4 and let bei ∈ {0, b}, with
b ∈

(
0, n−1

n
(2p− 1)

]
. Let the two bias groups be of equal size, i.e. n0 = nb = n/2. Then

in the room-choice game:

• If bi = bei with certainty, the fully integrated room is welfare-optimal and an equilib-
rium.

• If biases are uncertain, we can find distributions Fi that keep all bei constant such
that full segregation between the two bias groups is welfare-optimal. For α ≥ 2

n−2 ,
this is also an equilibrium.

(Proof on page 15.)

To illustrate this result, let us return to the example on taxation from the paper’s
introduction, and assume that the world consists of liberals and conservatives. Liberals
generally prefer higher taxes than conservatives, but everybody is aware that the optimal
tax level depends on how bad taxes are for economic growth. If the exact political prefer-
ence of each person is known, an informative exchange is possible even across party lines
as long as preferences are not too different. But now assume that instead, each member
of each political group is either a moderate or an extremist. It is only observable whether
anyone is liberal or conservative, not whether they are extremists or moderates. Both
have equal probability, so that in expectation each person is still an “average” liberal or
conservative.

Consider the problem of a liberal who is unsure whether he is listening to a moderate
conservative or a conservative extremist. He knows that a conservative extremist would
always tell a liberal that taxes are bad for the economy, regardless of what his information
is. Any statement about the damages of taxes has hence become less informative, while
being more likely to be made, than if the liberal was talking to an average conservative.
The same is true for a conservative listening to a liberal. Yet while discussion across
party lines has become less informative, this is not true for discussion within parties: The
possible biases within groups are still close enough so that both moderates and extremists
want to truthfully reveal their knowledge to other members of their party. It is hence
better for liberals to only talk to other liberals and for conservatives to only talk to
conservatives, than for any cross-party discussion to take place – not because of inherent
differences in preferences, but because of uncertainty about who one’s interlocutor is.

3.2. Detailed analysis and proofs for the model with uncertainty

3.2.1. Preliminary analysis

Similarly to the derivation of expression (13), we can write
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Ui(mh) = E

const− α ∑
j∈Ri,j 6=i

(
bj − bi + µhji +

∑
k 6=i

µjk − θi −
∑
k 6=i

θk

)2
∣∣∣∣∣∣σi


Ui(ml) = E

const− α ∑
j∈Ri,j 6=i

(
bj − bi + µlji +

∑
k 6=i

µjk − θi −
∑
k 6=i

θk

)2
∣∣∣∣∣∣σi
 .

Note that we are interested in the difference of the two expressions. Hence, while all bjs
are now unknown, this uncertainty only matters where bj is multiplied by µhji and µlji,
respectively. We can hence write

∆Ui(σi) = (Ui(mh)− Ui(ml))/α

= 2(µhji − µlji)(nRi
− 1)

[
−
µhji + µlji

2
−
∑

j∈Ri,j 6=i b
e
j

nRi
− 1

+ bi + E [θi|σi]

]
, (6)

which is identical to (13) except that we have substituted bej for bj. i’s problem remains
virtually unchanged, except that he now considers the expected value of biases of other
people within the room.

Now consider i’s messaging strategy. In the following, let

λh = Pr(mi = mh|σi = σh) and

λl = Pr(mi = ml|σi = σl)

i.e. λh and λl are the marginal probabilities with which i truthfully reveals his signal,
averaging over all possible bias types. For example, if bi has two possible values with equal
probability and i only reveals σh truthfully for one of them, then λh = 1

2 . The resulting
beliefs of player j are

µhji = pλh + (1− p)(1− λl)
1 + λh − λl

µlji = p(1− λh) + (1− p)λl

1− λh + λl
.

We can also write the following two terms, which both appear in equation (6):
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µhji − µlji = 2pλh + 2pλl − 2p− λh − λl + 1
(λh − λl + 1)(λl − λh + 1)

= (2p− 1) (λh + λl − 1)
(λh − λl + 1)(λl − λh + 1)

(7)

µhji + µlji =
2pλh − 2p

(
λh
)2 − 2pλl + 2p

(
λl
)2 − 2

(
λl
)2 − λh + λl + 2λhλl + 1

(λh − λl + 1)(λl − λh + 1)

=
4p
(
λl
)2 − 2

(
λl
)2 − 4pλhλl + 2λhλl + 2pλh − λh − 2pλl + λl − 2p+ 1

(λh − λl + 1)(λl − λh + 1)
+ 2p

= (2p− 1)
2
(
λl
)2 − 2λhλl + λh − λl − 1

(λh − λl + 1)(λl − λh + 1)
+ 2p

= (2p− 1)

( (
λl
)2 − λhλl − λl

(λh − λl + 1)(λl − λh + 1)
+

(
λl
)2 − λhλl + λh − 1

(λh − λl + 1)(λl − λh + 1)

)
+ 2p

= (2p− 1)
(

λl

λh − λl − 1
+ λl − 1
λh − λl + 1

)
+ 2p. (8)

From (7), we can see that the condition µhji ≥ µlji translates to λh + λl ≥ 1. We can
distinguish two cases:

• λh + λl = 1. Then µhji − µlji = 0 and i’s messages are completely uninformative.

• λh+λl > 1. We will focus on this case, in which messages by i have some informative
content.

We can intuitively see that if i’s messages are believed to contain some information about
σi, i should never want to misrepresent σh if bi is high compared to the average bias of
other players (and vice versa if bi is low). In fact, we can show the following result:

Lemma 1. Assume that λh + λl > 1. Then i always strictly prefers to truthfully reveal (i)
σh if bi ≥ E

[∑
j∈Ri,j 6=i bj

nRi
−1

]
and (ii) σl if bi ≤ E

[∑
j∈Ri,j 6=i bj

nRi
−1

]
.

Proof. Consider case (i) and assume that the opposite was true, i.e. ∆Ui(σh) ≤ 0 for some
bi ≥ E

[∑
j∈Ri,j 6=i bj

nRi
−1

]
. Then, since (µhji−µlji) > 0 by assumption and bi ≥ E

[∑
j∈Ri,j 6=i bj

nRi
−1

]
, it

must be that µh
ji+µl

ji

2 −E [θi|σi] > 0 or µh
ji+µl

ji

2 −p > 0, which means
(

λl

λh−λl−1 + λl−1
λh−λl+1

)
>

0. But we know that λh− λl− 1 < 0 and λh− λl + 1 > 0 from λh + λl > 1, which implies
that

(
λl

λh−λl−1 + λl−1
λh−λl+1

)
< 0. We can analogously prove (ii).

Now we can consider which conditions need to be in place for an equilibrium to exist in
which i tells the truth with probabilities λh and λl. To be clear: We are still considering
pure equilibria, since i has a strict preference for lying or telling the truth for any bi

except for non-generic boundary cases. However, given Fi (the distribution of bi), we can
determine how often i’s messages will be truthful once we have established for which bi i

12



wants to tell the truth and for which he wants to lie. We can think of λh and λl as the
marginal probabilities of truth-telling by i.

Lemma 2. There exists an equilibrium in which i truthfully reveals σh with marginal prob-
ability λh and truthfully reveals σl with marginal probability λl if and only if

1− Fi
(∑

j∈Ri,j 6=i b
e
j

nRi
− 1

+
(
p− 1

2

)
·
(

λl

λh − λl − 1
+ λl − 1
λh − λl + 1

))
≤ λh

and
Fi

(∑
j∈Ri,j 6=i b

e
j

nRi
− 1

+
(
p− 1

2

)(
λh − 1

λh − λl − 1
+ λh

λh − λl + 1

))
≥ λl.

Both inequalities hold with equality if Fi is continuous at the argument.

Proof. From equation 6 we get that ∆Ui(σi) ≥ 0⇔

bi −
∑

j∈Ri,j 6=i b
e
j

nRi
− 1

≥
µhji + µlji

2
− E [θi|σi] .

Recall that E
[
θi|σi = σh

]
= p and E

[
θi|σi = σl

]
= 1 − p. We can make use of the

expression for µhji + µlji that we have derived in (8) to get ∆Ui(σh) ≥ 0⇔

bi −
∑

j∈Ri,j 6=i b
e
j

nRi
− 1

≥
(
p− 1

2

)
·
(

λl

λh − λl − 1
+ λl − 1
λh − λl + 1

)
and ∆Ui(σl) ≤ 0⇔

bi −
∑

j∈Ri,j 6=i b
e
j

nRi
− 1

≤
(
p− 1

2

)(
λh − 1

λh − λl − 1
+ λh

λh − λl + 1

)
.

In an equilibrium, the beliefs of the receivers of mi must be correct on average. In
this case, this means that it must be sufficiently likely for bi to fulfill either of the two
inequalities, which gives us the conditions from the proposition. If Fi is continuous at the
argument, correct beliefs require that the inequalities hold with equality. If it is not, there
could potentially be mixed equilibria in which for the borderline type, i mixes between
different messages and beliefs are correct on average.

Note that that
(

λh−1
λh−λl−1 + λh

λh−λl+1

)
−
(

λl

λh−λl−1 + λl−1
λh−λl+1

)
= 2. Lemma 2 consequently

describes conditions on the distribution function F at two points that are 2p − 1 apart.
In particular if Fi is continuous at these two points the conditions state that probability
mass in the interval between these two points has to equal λl +λh− 1. More importantly,
the conditions can be used to show that player i babbles in a given room if Fi does not
have enough probability mass around the average bias of the other players in the room.
To be precise, if Fi has no probability mass in

∑
j∈Ri,j 6=i b

e
j

nRi
−1 ± (2p− 1), then the conditions

13



of lemma 1 imply λl + λh = 1 and therefore uninformative messages.3

3.2.2. Proofs

Proof of proposition 11 on page 8.

Without loss of generality, let b1 and bn be the smallest and largest biases respectively.
We can represent each bias as the expected value of a distribution that only places density
on the values b1− (2p−1) and bn+ (2p−1). For this set of distributions {F1, F2, . . . , Fn},
the conditions of lemma 2 imply λh + λl = 1, and hence there exists no equilibrium in
which any of the players tells the truth.

Proof of proposition 12 on page 9.

We can construct a distribution Fi that has positive density on
∑

j∈Ri,j 6=i b
e
j

nRi
−1 , which means

that the conditions of lemma 2 imply that there exists an equilibrium in which a message
by i is informative.

To achieve full truth-telling (i.e. λh = λl = 1), lemma 2 implies we would have to
be able to construct an Fi that only has density inside the interval

∑
j∈Ri,j 6=i b

e
j

nRi
−1 ±

(
p− 1

2

)
.

However, this would contradict our starting assumption that if bi is bei for sure, there exists
no equilibrium in which i tells the truth.

Proof of proposition 13 on page 9.

By the symmetry of F , all F κ have the same expected value. We can find a κ̄ small
enough so that F κ has less than ε′ > 0 probability mass within

∑
j∈Ri,j 6=i b

e
j

nRi
−1 ± (2p− 1)

for any κ ≤ κ̄. Then it follows from lemma 2 that there exists no equilibrium for which
λl + λh > 1 + ε′. The result follows now from the continuity of (8) and the fact that
µhji − µlji = 0 if λh + λl = 1.

Proof of proposition 14 on page 9.

Let the lower (upper) bound of the support be bi (b̄i). Note that by assumption bi ≤∑
j∈Ri,j 6=i b

e
j

nRi
−1 − (2p− 1) and b̄i ≥

∑
j∈Ri,j 6=i b

e
j

nRi
−1 +(2p− 1) which implies by lemma 1 that player

i sends uninformative messages in equilibrium. Now fix bε =
∑

j∈Ri,j 6=i b
e
j

nRi
−1 − (2p− 1) and

b̄ε =
∑

j∈Ri,j 6=i b
e
j

nRi
−1 + (2p− 1). This implies that µhji − µlji ≤ ε whenever the probability that

bi ≥ b̄ε plus the probability that bi < bε is more than 1− ε′ for some ε′ > 0 (by lemma 1
3To be precise, both points at which Fi is evaluated in lemma 1 lie in the interior of the interval

[
∑

j∈Ri,j 6=i be
j

nRi
−1 − (2p− 1) ,

∑
j∈Ri,j 6=i be

j

nRi
−1 + (2p− 1) and therefore Fi will be continuous at both points and

equal to the same value if there is no probability mass in this interval. As the conditions in lemma 1 then
hold with equality, they imply λh + λl = 1 which in turn implies µh

ji − µl
ji = 0.

14



and the continuity of µ·ji in λh and λl). Let σFi
2 be defined by

σFi

2 = (1−ε′)
(
b̄i − bei
b̄i − bi

(bi − bei )2 + bei − bi
b̄i − bi

(b̄i − bei )2
)

+ε′
(
b̄ε − bei
b̄ε − bε

(bε − bei )2 + bei − bε

b̄ε − bε
(b̄ε − bei )2

)
.

Any distribution with variance above σFi
has to have more than ε′ probability mass above

b̄ε or below bε as σFi
is the variance of the distribution maximizing variance under the

constraint that only 1− ε′ probability mass is outside the interval [bε, b̄ε]. Consequently,
any distribution with variance above σFi

will lead to µhji − µlji ≤ ε.

Proof of proposition 15 on page 10.

Fix 0 and a b > 0. Consider the distributions putting probability 1/2 on −(p− 1/2) and
1/2 on p − 1/2 instead of 0 for sure and 1/2 on b − (p − 1/2) and 1/2 on b + (p − 1/2).
Under segregation everyone is (just!) truthtelling. In any room including at least 1 player
with another bias than the own one, a bias 0 (b) player will however lie if his bias is the
lower (higher) element of the support:

Take for example a player with bias b+p−1/2 that got a low signal. Then ∆U(σl) > 0
can be written as b+ p− 1/2−

∑
j∈Ri,j 6=i b

e
j

nRi
−1 > (µhji + µlji)/2− (1− p). The right hand side

of this inequality is bounded from above by p − 1/2 because µhji ≤ p and µlji = 1 − p by
lemma 1 according to which λh = 1. As b−

∑
j∈Ri,j 6=i b

e
j

nRi
−1 > 0, the claim follows.

To compute welfare under a non-segregated scenario, we need to compute E[(µij−θj)2].
Take, for example, a player j with biases in {b − p + 1/2, b + p − 1/2}. We showed that
this player always sends the high signal if bi = b + p − 1/2 if at least one player of the
other group is in his room. The most informative messaging strategy of such a player in
such a room is therefore truthtelling when bi = b− p+ 1/2 and sending the high message
otherwise. This implies λh = 1 and λl = 1/2 and therefore µhij = (1+p)/3 and µlij = 1−p.
In this case,

E[(µij − θj)2] = 1
2

[
1
2

{
p

(
1 + p

3
− 1
)2

+ (1− p)(−p)2

}
+ 1

2

{
p(1− p)2 + (1− p)

(
1 + p

3

)2
}]

+1
2

[
1
2

(
1 + p

3
− 1
)2

+ 1
2

(
1 + p

3

)2
]

= 1
4

[
(1 + p)p

2 − 4p+ 4
9

+ (1− p)p2 + p(1− p)2 + (2− p)1 + 2p+ p2

9

]
= 1

4

[
2
3

+ 4
3
p− 4

3
p2
]
.

Following the derivations of player i’s utility in a room that contains players of both
groups, see the proof of proposition 1, we can write player i’s utility if all players are
in the same fully integrated room – and choose the best possible messaging strategy

15



corresponding to λh = 1 (λh = 1/2) and λl = 1/2 (λl = 1) for players with expected bias
bei = b (bei = b) – as

U int
i = −α

∑
j 6=i

{
(bj − bi)2}− [n+ α(n− 1)n] /4 + (1/4− p(1− p))(1 + α(n− 1))

+
(
1/4− [2/3 + p4/3− p24/3]/4

)
[n− 1 + α

∑
j 6=i

{n− 1}]

while his expected payoff under full segregation is

U seg
i = −α

∑
j 6=i

{
(bj − bi)2}− [n+ α(n− 1)n] /4 + (1/4− p(1− p))(n/2 + α(n− 1)n/2).

U seg
i exceeds U int

i if and only if

(1/4− p(1− p))(1 + α(n− 1))(n/2− 1) ≥
(
1/4− [2/3 + p4/3− p24/3]/4

)
[n− 1 + α(n− 1)2]

⇔ (1− 4p+ 4p2))(1 + α(n− 1))(n/2− 1) ≥
(
1/3− p4/3 + p24/3

)
[n− 1 + α(n− 1)2]

⇔ 3(1 + α(n− 1))(n/2− 1) ≥ n− 1 + α(n− 1)2

⇔ 3
2

(1 + α(n− 1))n− 2
n− 1

≥ 1 + α(n− 1)

⇔ n− 2
n− 1

≥ 2
3

which is true for n ≥ 4. As the payoffs do not differ across players in each of the two
scenarios, welfare is higher under segregation than under integration given that n ≥ 4.

To see that other room configurations cannot improve welfare, start from full segre-
gation. Moving k players from room 1 to room 2 will lead to less information for the
remaining players in room 1. Suppose nevertheless that this move was welfare increasing.
Then players in the new room 2 must have better information than under segregation.
Note that by assumption the most informative strategy players could possibly adopt in
the new room is λh = 1 (λh = 1/2) and λl = 1/2 (λl = 1) for players with expected bias
bei = b (bei = b). Assume that this strategy is an equilibrium in the new room 2 (if it is
not, this step increases the welfare gain over segregation). But then it is clearly optimal
to move the remaining players from room 1 to room 2 as well (if this strategy remains an
equilibrium): This improves information for all players. But this would imply U int

i > U seg
i

which contradicts what we showed above.

4. Public information

Here we add a public information component. Our main interest is in the comparative
statics of the weight of this public information component, i.e. if more information be-
comes publicly available, how will communication be affected?
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We consider in this extension a state of the world θ = τθ0 + (1 − τ)
∑n

i=1 θi; that
is, we add – compared to the main model of the paper – an element θ0 ∈ {0, 1} which
receives a weight τ . As for all other θi, there is also binary a signal σ0. This signal has
accuracy p0 > 1/2, i.e. Pr(σ0 = σh|θ0 = 1) = Pr(σ0 = σl|θ0 = 0), and is observed by all
players. Consequently, all players share the same belief about θ0 which is denoted by µ0.
Everything else is as in the main model of the paper.4

The optimal choice of action is now

a∗i = bi + E[θ] = bi + τµ0 + (1− τ)
n∑
j=1

µij.

Note that the proof of lemma 1 goes through with straighforward adaptations. In
particular,

Ui(mi) = E

const− α ∑
j∈Ri,j 6=i

(
aj(mi,m−i,Ri

, σj)− bi − τθ0 − (1− τ)
n∑
k=1

θk

)2
∣∣∣∣∣∣σi
 .

which leads to

∆Ui(σi) = (Ui(mh)− Ui(ml))/α

= −
∑

j∈Ri,j 6=i

E
[

(1− τ)2µhji
2 − (1− τ)2µlji

2

+2(1− τ)(µhji − µlji)

(
bj − bi + τ(µ0 − θ0) + (1− τ)

∑
k 6=i

(µjk − θk)− (1− τ)θi

)∣∣∣∣∣σi
]

= −2(1− τ)(µhji − µlji)
∑

j∈Ri,j 6=i

[
(1− τ)

µhji + µlji
2

+ bj − bi − (1− τ)E [θi|σi]

]

= 2(1− τ)(µhji − µlji)(nRi
− 1)

[
−(1− τ)

µhji + µlji
2

−
∑

j∈Ri,j 6=i bj

nRi
− 1

+ bi + (1− τ)E [θi|σi]

]
.

Using this expression instead of (13) in the paper the proof of lemma 1 applies and we
can concentrate on pure strategy equilibria.

A result similar to theorem 1 in the paper now follows immediately from the expression
above:

4One way to interpret the weights is the following: Suppose there is a continuum of θ̃ of unit length,
say [0, 1]. Each θ̃ ∈ [0, 1] is either 0 or 1 and agents try to match the average θ̃ (plus their bias) with
their action. For a set Θ0 ⊂ [0, 1] of measure τ , a public signal is available (there could be several public
signals which are then aggregated; the only thing that matters is that everyone has the same expectation
about the value of the average θ̃ in Θ0). Each player i has a private signal about the average value of the
θ̃ ∈ Θi where Θi has measure (1−τ)/n and we assume that all Θi are pairwise disjoint. The comparative
static with respect to τ answers then the question: What happens if information/signals that used to be
privately held by some expert are now publicly available?
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Theorem 3. Let b =
∑

k∈R bk

nR
be the mean bias of players in room R. In the most informa-

tive equilibrium in this room, a player i tells the truth if and only if

bi ∈
[
b− nR − 1

nR
(p− 1

2
)(1− τ), b+ nR − 1

nR
(p− 1

2
)(1− τ)

]
and babbles otherwise.

Proof. Consider the difference between lying and truth-telling for player i, i.e. ∆Ui
as derived above. For every non-babbling player µhji = p and µlji = 1 − p (as we can
concentrate on pure strategy equilibria) which implies that the necessary equilibrium
condition ∆Ui(σh) ≥ 0 simplifies to

bi −
1

nR − 1
∑

j∈Ri,j 6=i

bj ≥ (1
2
− p)(1− τ)

nR
nR − 1

bi −
1

nR − 1
∑
k∈Ri

bk ≥ (1
2
− p)(1− τ)

bi ≥ b− nR − 1
nR

(
p− 1

2

)
(1− τ).

If this inequality does not hold, player i will not use the truthful strategy in the most
informative equilibrium and therefore he will babble in the most informative equilibrium.

We can analogously solve for ∆Ui(σl) ≤ 0 and get the interval in the theorem.
Theorem 3 implies that a higher weight on public information reduces the length of

the truthtelling interval. That is, public information crowds out communicated private
information in a given room. This implies that also under the welfare optimal room
allocation less private information will be communicated for higher τ . 5

Proposition 16. Let τh > τ l. In the welfare optimal room allocation the total amount of
communicated information is (weakly) less under τh than under τ l

Proof. Take the welfare optimal room allocation under τh. Using the same room
allocation under τ l will create at least as much information as under τh by theorem
3. (Adapting the room allocation may increase the number of communicated pieces of
information further.)

5Note that welfare – for a given τ – is, as in the paper, proportional to the number of communicated
pieces of information. The derivation goes through with the obvious adaptations leading to

W = −α
n∑

i=1

∑
j 6=i

{(bj − bi)2} − 1
4

(1− τ)2n2 [1 + α(n− 1)]

+(1− τ)2(p− 1
2

)2(1 + α(n− 1))
∑

i

ζi − n(1 + α(n− 1))p0(1− p0)τ2.
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Note, however, that welfare is not necessarily decreasing in τ . The positive effect of
more public information counteracts the negative effect of less private information. The
overall effect is generally ambiguous.6

To think about segregation, let us focus on the binary bias case, i.e. bi ∈ {0, b} for
i = 1, . . . n. Recall that in this setting the welfare optimal room allocation has to fall into
one of the following four categories, see section B:

1. full integration (either with everyone truthtelling or only the majority)

2. full segregation

3. a mixed room in which only majority players are truthtelling and one room with
some minority players

4. a mixed room in which everyone is truthtelling and an extra room with some ma-
jority players.

The detrimental effect of higher τ on communication, now immediately implies that
an increase in τ leads to more segregation in one of the following ways: First, full segre-
gation might become optimal for higher τ (as truthful communication in a mixed or fully
integrated room is possible to a lesser degree). Second, less minority players can remain in
a mixed bias room in which only majority players are truthtelling (as otherwise majority
players babble). Third, less majority players can remain in a mixed room in which all
players are truthtelling (as otherwise minority players lose their incentive to be truthful).

The main intuition behind these results is that more public information implies less
influence of i’s message on j’s decision because i holds less relevant information privately.
With less influence lying is less costly as j will “overshoot” less (when communicating a
high message instead of a low message). This intuition also suggests that for sufficiently
high τ communication between players of different biases is impossible and therefore
segregation by bias is welfare optimal and an equilibrium. The following result states this
formally for generic configurations of biases B (not necessarily binary). Assume that B is
generic in the sense that player i’s bias is not the average of other players’ biases (whose
biases are distinct from bi).7

Theorem 4. For generic B, there exists a τ̄ < 1, such that full segregation based on biases
is both welfare optimal and an equilibrium if τ ≥ τ̄ .

6To construct an example where welfare is locally decreasing in τ it is enough to choose parameter
values such that truthtelling in a fully integrated room is just possible, i.e. some player is indifferent
between truthtelling and not. Marginally increasing τ in this situation will discretely lower the

∑
i ζi in

the welfare function while affecting all other terms continuously. Hence, a slightly higher τ will decrease
welfare.

7More precisely, the assumption is that bi 6=
∑

bj∈B\{bi}
ñbj∑
k ñbk

∗ bj for any ñbj ∈ {0, 1, . . . , nbj} where
nbj is the number of players with bias bj .
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Proof. Theorem 3 together with our genericity assumption implies that for a given
room in which at least two players differ in their bias there is a τ̄R < 1 such that babbling
is the unique equilibrium of the messaging game in this room if τ ≥ τ̄R. By the finiteness
of the set of players, the number of possible room configurations is finite and therefore
maxR τ̄R exists and is strictly less than 1. Take τ̄ = maxR τ̄R. Then babbling is the
unique equilibrium of all non-segregated rooms and it is clear that segregation maximizes
the number of communicated pieces of information and therefore welfare. Also no player
wants to deviate from a segregated room to another room as this would lead to babbling
by all players in the room he deviates to (and also deprives the players of the segregated
room of his truthful message).

5. Signaling

5.1. Binary signal

This section sexplores a setting where players in a given room have an additional option:
they can not only send a cheap talk message but also send a costly signal. The costly
signal could be to search for a link to some document supporting the stated opinion or
to spend some time to carefully state the argument on may want to make. The message
space is therefore {ml,mh, m̄l, m̄h} where ml and mh are costless cheap talk messages as
before and the messages m̄h and m̄l are costly messages. Sending such a costly message
deducts c > 0 from the sending player’s payoff.

For now, take the room allocation as given and consider the choice of messages. The-
orem 1 implies that players with bi ∈ [b̄− (p− 1/2)(nR− 1)/nr, b̄+ (p− 1/2)(nR− 1)/nR]
can communicate truthfully through costless cheap talk. Hence, the possibility of send-
ing costly messages is irrelevant for them in the most informative equilibrium. We will
try to construct an equilibrium in which some players with bi outside this interval are
able to communicate their information through a costly message. For concreteness, let
bi > b̄ + (p − 1/2)(nR − 1)/nR in the following. Now consider the following strategy of i
and beliefs of −i. Player i sends message m̄h if σi = σh and message ml otherwise. The
beliefs of player j ∈ R, j 6= i are µhji = µlji = µl̄ji = 1 − p and µh̄ji = p. In words, player
j beliefs that i received a low signal unless i sends the costly high message m̄h. These
beliefs are consistent with Bayes’ rule given i’s strategy and it remains to check whether
i’s strategy is optimal given these beliefs. First, consider σi = σh. Equation 13 in the
proof of lemma 1 implies that i prefers sending the costly message m̄h to sending a cheap
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talk message if and only if

2α(2p− 1)(nR − 1)
[
−1

2
−
∑

j∈R,j 6=i bj

nR − 1
+ bi + p

]
≥ c

⇔ bi ≥
c

2α(2p− 1)(nR − 1)
−
(
p− 1

2

)
+
∑

j∈R,j 6=i bj

nR − 1

⇔ bi ≥ b̄− nR − 1
nR

(
p− 1

2

)
+ c

2α(2p− 1)nR
.

Hence, i’s strategy is only optimal if bi is sufficiently high (relative to c). The reason
is that players with higher bi suffer, due to the concavity of the utility function, more
from other players taking a too low action. Hence, they are willing to pay more, i.e.
tolerate a higher c, for increasing the beliefs and therefore the actions of the other players
in the room. Note that bi > b̄ + (p − 1/2)(nR − 1)/nR implies the condition above if
c ≤ 2α(2p− 1)2(nR − 1).

Second, consider σi = σl. Equation 13 in the proof of lemma 1 implies that i prefers
sending a cheap talk message to sending the costly message m̄h if and only if

2α (2p− 1) (nR − 1)
[

1
2
− p+ bi −

∑
j∈R,j 6=i bj

nR − 1

]
≤ c

⇔ bi ≤
c

2α(2p− 1)(nR − 1)
+
(
p− 1

2

)
+
∑

j∈R,j 6=i bj

nR − 1

⇔ bi ≤ b̄+ nR − 1
nR

(
p− 1

2

)
+ c

2α(2p− 1)nR
.

This condition is satisfied if bi is not too high. The reason why players with very high
bi are unable to signal with costly messages is that they would happily pay the cost c in
order to induce a high belief even if their signal is low. If bi is lower, however, players
are only willing to do so if their signal is high where a low action (induced by low beliefs
resulting from cheap talk) would hurt the player more compared to the situation where
his signal is low.

This implies that the above stated strategy and beliefs constitutes and equilibrium of
the messaging game if bi ∈ [b̄− (p−1/2)(nR−1)/nR+c/(2αnR(2p−1), b̄+(p−1/2)/nR−
1)/nR + c/(2αnR(2p− 1)].

An analogous argument yields that it is an equilibrium for bi ∈ [b̄ − (p − 1/2)(nR −
1)/nR− c/(2αnR(2p− 1), b̄+ (p− 1/2)(nR− 1)/nR− c/(2αnR(2p− 1)] to use the strategy
of sending message m̄l if σi = σl and message mh if σi = σh together with beliefs µhji =
µlji = µh̄ji = p and µl̄ji = 1− p.

In conclusion, we have to distinguish two cases. First, c ≤ 2α(2p− 1)2(nR− 1). Then,
there is an equilibrium in which players with bias very close to b̄ will engage in truthful
cheap talk, players with bias moderately close to b̄ will truthfully communicate using

21



costly messages for signals in the direction of bi − b̄, and finally players with bi far away
from b̄ will babble.

Second, c > 2α(2p− 1)2(nR− 1). In this case, there is an equilibrium in which players
with bias very close to b̄ will engage in truthful cheap talk, players with bi somewhat
further away from b̄ or very far away from bi will babble, but there are some biases in
between at which players engage in meaningful communication via costly signaling.

Above we specified certain beliefs and strategies and checked when these strategies
and beliefs consitute an equilibrium of the messaging game. One might wonder whether
other equilibria with signaling are possible. This is indeed the case, however, none of
these equilibria generates more information than the one we constructed (while the usual
babbling logic implies that there are many less informative equilibria). To see this note
a few peculiarities of the equilibrium above: First, we chose the most extreme beliefs, p
and 1 − p, possible in order to maximizes the incentives to engange in costly signaling.
Second, we let players byu the signal only if σi is in line with their bias relative to b̄. Put
differenltly, a player with bi > b̄ will buy the costly signal only if σi = σh. Due to the
concavity of the utility function this is the σi value for which i has the highest willingness
to pay for increasing the other players’ beliefs. Any other equilibrium will give lower
incentives to engage in signaling and will therefore reduce the range of bi for which costly
signaling is optimal.

In terms of welfare inducing a babbling player to signal information increases the
number of pieces of information by nRi

− 1. Consequently, welfare increases by (p −
1/2)2(1 + α(n − 1))(nRi

− 1). The costs are c. Welfare increases therefore by signaling
if c < (p − 1/2)2(1 + α(n − 1))(nRi

− 1) = (2p − 1)2(1 + α(n − 1))(nRi
− 1)/4 (see the

expression for welfare in the proof of proposition 1). This implies that the most informative
equilibrium is no longer necessarily the welfare maximal equilibrium because information
through signaling comes at a cost and a player’s trade off between informing other players
and incurring the cost c differs from the trade off a welfare maximizing planner faces. Note
that welfare maximizing and most informative equilibrium coincide if c is either very low or
very high and only differ in an intermediate range. As a consequence, theorem 3 still holds
in this setup (the proof goes through with minor adaptations): in sufficiently polarized
societies full segregation is welfare optimal and in sufficiently homogenous societies full
integration is optimal.

5.2. Continuous signal

This subsection adapts the previous one by allowing for a continuous signal. That is,
the sender can choose how much effort he wants to put into drafting the message. We
equate this effort with its costs c which are observable by the receiver. The sender can
choose any level of c in some interval [0, c̄]. Following the signaling literature, we focus
on the least cost separating equilibrium. “Separating” refers in our setup to informative
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communication. In our empirical application effort can be interpreted as formulating the
message well or searching for evidence in the form of links.

The message space in this variation consists of a family of two messages {ml(c),mh(c)}
indexed by the effort cost. Cheap talk messages occur for c = 0. Theorem 1 implies that
players with bi ∈ [b̄− (p− 1/2)(nR − 1)/nr, b̄ + (p− 1/2)(nR − 1)/nR] can communicate
truthfully through costless cheap talk and therefore the least cost separating strategy for
them is truthful cheap talk.

For players with bi ∈ (b̄+(p−1/2)(nR−1)/nR, b̄+(p−1/2)(nR−1)/nR+ c̄/(2αnR(2p−
1)], there exists a cbi

∈ (0, c̄] such that

bi = b̄+ (p− 1/2)nR − 1
nR

+ cbi

2αnR(2p− 1)

⇔ cbi
= 2α (2p− 1) (nR − 1)

[
1
2
− p+ bi −

∑
j∈R,j 6=i bj

nR − 1

]
.

By the arguments in the previous subsection, cbi
is the lowest cost level at which player i

can credibly signal. Analogously, for players with bi ∈ (b̄− (p− 1/2)(nR− 1)/nR, b̄− (p−
1/2)(nR − 1)/nR − c̄/(2αnR(2p− 1)], cbi

∈ (0, c̄] equals

bi = b̄− (p− 1/2)nR − 1
nR

− cbi

2αnR(2p− 1)

⇔ cbi
= 2α (2p− 1) (nR − 1)

[
1
2
− p− bi +

∑
j∈R,j 6=i bj

nR − 1

]
.

Players with |bi − b̄| > (p − 1/2)(nR − 1)/nR + c̄/(2αnR(2p − 1) no credible signaling is
possible (see the previous subsection).

In conclusion, the model implies that players with bi close to the average will commu-
nicate by cheap talk, players with bi intermediately away from b̄ will signal and extremists
will babble. The signaling effort is increasing in |bi − b̄| up to some point and drops to
zero afterwards.

6. Verification

This sections extends the model by allowing players to communicate their signal verifiably
at a cost c > 0. In other words, players have the choice to either send a costelss cheap
talk message or to verifiably communicate their true signal at cost c to all players in their
room. Players in other rooms receive neither cheap talk nor verifiable messages.

Let the room allocation be given. Theorem 1 implies that players with bi ∈ [b̄− (p−
1/2)(nR−1)/nr, b̄+(p−1/2)(nR−1)/nR] can communicate truthfully through cheap talk
and therefore verification is unnecessary for them. We will therefore concentrat on players
with bias bi outside this interval. Let, for concreteness, bi > b̄ + (p − 1/2)(nR − 1)/nR.
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We now try to construct an equilibrium in which i uses verification in order to credibly
transmit information. By bi > b̄ + (p − 1/2)(nr − 1)/nR, player i has greater incentives
to verify a high signal than a low signal. To maximize informativeness, it is therefore
optimal to choose the belief of the other players in case i sends a cheap talk message to
be µnvij = 1− p. That is, player j believes with probability 1 that i received the low signal
whenever i sends a cheap talk message. The fully informative equilibrium that we try
to establish is then that i verifies his signal whenever it is high and sends a cheap talk
message when his signal is low. Given the belief µji, this is informationally equivalent to
truthful communication. It is obvious that, given µji, i will not verify a low signal but
it needs to be checked whether verifying a high signal is optimal. Using equation 13 in
the proof of lemma 1 and given µji, the utility of verifying minus the utility of sending a
cheap talk message given σi = σh is greater than c if and only if

2α(2p− 1)(nRi
− 1)

[
−1

2
−
∑

j∈Ri,j 6=i bj

nRi
− 1

+ bi + p

]
≥ c

⇔ bi ≥
c

2α(2p− 1)(nRi
− 1)

−
(
p− 1

2

)
+
∑

j∈Ri,j 6=i bj

nRi
− 1

.

This means that bi has to be large enough relative to c to make verification worthwhile.
Clearly, verification is not optimal if c is excessively large. The option of sending a cheap
talk message inducing belief µji = 1− p is less attractive for players with higher bi due to
the concavity of the quadratic loss function. Consequently, players with a higher bi are
willing to tolerate higher costs of verification.

If bi is below the threshold above, then there is no equilibrium in which i verifies his
signal. By choosing µji = 1 − p and having verification only when the signal is high, we
maximized the incnetives of i to verify. Hence, i will never verify if he finds verification
suboptimal above. The following result summarizes the derivation above

Lemma 4. The most informative equilibrium in room R consists of the following strategies:

• truthful cheap talk if bi ∈ [b̄− (p− 1/2)(nr − 1)/nr, b̄+ (p− 1/2)(nr − 1)/nr]

• verifying σh and cheap talk in case of σl if bi > b̄ + (p − 1/2)(nR − 1)/nr and
bi ≥ c

2α(2p−1)(nR−1) − p+ 1
2 +

∑
j∈R,j 6=i bj

nR−1

• verifying σl and cheap talk in case of σh if bi < b̄ − (p − 1/2)(nR − 1)/nr and
bi ≤ − c

2α(2p−1)(nR−1) + p− 1
2 −

∑
j∈R,j 6=i bj

nR−1

• babbling else.

Note that for c sufficiently small no player will babble. As we considered only players
that could not truthfully communicate with cheap talk, the condition

c ≤ 2α(2p− 1)2(nR − 1)
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is sufficient for ensuring that no player babbles. If this condition is violated, the structure
is that “centrists” (those with bi ∈ [b̄ − (p − 1/2)(nR − 1)/nr, b̄ + (p − 1/2)(nR − 1)/nr])
communicate truthfully through cheap talk, “moderate extremists” babble and “strong
extremists” verify.

In terms of welfare inducing a babbling player to verify information increases the
number of pieces of information by nRi

− 1. Consequently, welfare increases by (p −
1/2)2(1+α(n−1))(nRi

−1). The costs are c. Consequently, welfare increases by verification
if c < (p − 1/2)2(1 + α(n − 1))(nRi

− 1) = (2p − 1)2(1 + α(n − 1))(nRi
− 1)/4 (see the

expression for welfare in the proof of proposition 1). This implies that the most informative
equilibrium is no longer necessarily the welfare maximal equilibrium because information
through verification comes at a cost.8

The implications of verification for room allocation is that bigger rooms can be optimal.
Clearly, any room allocation will produce at least as much information with verification as
without. Since players that were babbling under pure cheap talk may now communicate
information by means of verification, it can make sense to have people with a larger spread
of biases in one room.

7. States correlated within bias groups

This section considers a variation of the model in which players with a similar bias have
similar information. This feature implies that communication across bias groups is even
more desirable from a welfare perspective. However, we will show that for the same
reasons as in the paper such communication is infeasible in equilibrium if bias differences
are large.

We will focus on a model setup with two bias groups, i.e. B = {0, b}. Without loss of
generality let players i = 1, 2, . . . , n0 have bias bi = 0 and players i = n0 + 1, . . . , n0 + nb

have bias bi = b. We will introduce similarity of information by assuming that θi and θj

are positively correlated if either i, j ∈ {1, . . . , n0} or i, j ∈ {n0 +1, . . . , n0 +nb}. However,
we maintain the assumptions that (i) θi and θj are uncorrelated if i ∈ {1, . . . , n0} and
j ∈ {n0 +1, . . . , n0 +nb}, (ii) signal σi is noisy and independent of σj and θj conditional on
θi, (iii) that θi ∈ {0, 1} and the marginals are such that E[θi] = 1/2 (this latter assumption
is for covenience of notation only). We will not be more specific about the correlation but

8In this context, it is interesting to ask when a player can be prevented from verifying his signal. Take
again bi >, b̄+(p−1/2)(nR−1)/nr for concreteness. Then babbling is preferred to verifying a high signal
if

2α(p− 1/2)(nR − 1)
[
−p+ 1/2

2
−
∑

j∈R,j 6=i bj

nR − 1
+ bi + p

]
≤ c

which is equivalent to

bi ≤
c

2α(p− 1/2)(nR − 1)
− 1

2

(
p− 1

2

)
+
∑

j∈R,j 6=i bj

nR − 1
.
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want to point out the two extreme cases: First, perfect correlation within bias groups.
In this case, all players with the same bias receive effectively information about the same
underlying variable. On the other, complete independence which is the case we analyze
in the paper.

Given the flexible formulation, it is unsurprising that a closed form solution no longer
exists. However, we will be able to show a result similar to the one in the main text in this
setup. In a given room including players of both bias groups essentially no information
transmission is possible if b if sufficiently large. Eventually, we conclude this section with
some comments on a behavioral phenomenon namely correlation neglect, i.e. we discuss
how our results change if players are not taking the correlation of states into account.

The following proposition states that the amount of information transmitted in a given
room with players of both biases is less than an arbitrary ε > 0 if b is large enough.9

Proposition 17. Let R be a room containing at least one player with bias 0 and at least one
player with bias b. For every ε > 0, there exists a bε such that Em−i,σj

[µj(h)−µj(l)|σi] < ε

for every player i ∈ R in every equilibrium of the communication stage.

Proof of proposition 17: Clearly, it is still optimal to choose action ai = bi +
E[θ|σi,mRi

] where mRi
are the messages observed by player i.

For concreteness take a player i with bias bi = 0 and compare the difference in ex-
pected utility of this player when sending message h and message l (we neglect that the
expectation is conditional on σi to avoid cluttering of notation):

∆Ui = α
∑

j 6=i, j∈Ri

E
[
aj(l)2 − aj(h)2 − 2θ(aj(l)− aj(h))

]
= α

∑
j 6=i, j∈Ri

E
[
µj(l)2 − µj(h)2 + 2bj(µj(l)− µj(h))− 2θ(µj(l)− µj(h))

]
= −2α

∑
j 6=i, j∈Ri

E
[
(µj(h)− µj(l))

(
µj(h) + µj(l)

2
− θ + bj

)]
.

As −n0 − nb ≤ (µj(h) + µj(l))/2− θ ≤ n0 + nb, choosing bε = (n0 + nb) + (n0 + nb)2/ε is
sufficient for ∆Ui < 0 regardless of σi.

8. Alternative signal technologies

In this section, we consider three variations of the model in the paper. The first is
a straightforward extensions in which we allow for more signals than just the binary
signal structure considered in the paper. (We can also allow for more states but this is

9We denote here the action of player j when i sends message l by aj(l). This action depends also on
σj and messages of other players but we suppress this dependence in the interest of readability. Similarly
µj(l) is j’s belief about θ if i sends message l which again depends also on σj and other players’ messages.
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relatively immaterial in our setting.) The second variation considers goes a bit further by
considering a continuum of signals. The third changes the signal structure such that no
longer each player receives a signal about “his state” θi as in the main text but instead all
players receive a noisy signal about the same one-dimensional state θ. For all variations
we show that our main result that integration is optimal and an equilibrium if there
is little polarization while segregation is optimal and an equilibrium if there is a lot of
polarization continue to hold. The main shortcoming of the first and third variation
is that for intermediate values of polarization it is no longer possible to determine the
most informative equilibrium of the messaging game as we can no longer rule out that
this equilibrium involves mixed strategies. The second variation allows only a closed form
solution of the most informative messaging equilibrium for particular distributions, e.g.the
uniform distribution. This makes each variation less tractable than the model of the main
paper.

8.1. Larger signal and state space

Now allow for an arbitrary finite number of states, biases and signals. We keep the
assumption that states and signals of different players are independent and that player
i receives a signal that is partially informative about state θi (but independent about
all other states). We also keep the utility function, i.e. the additive structure. The
message space equals the signal space and we assume that lower signals lead to a lower
expected value of θi. For notational simplicity let the signal be the posterior it leads to,
i.e. σi = E[θi|σi].

Following similar steps as in the main text, we can derive the expected utility difference
between sending two messages labeled as high (h) and low (l). Let µhij denote the expected
value that j assigns to θi upon receiving message h (given some equilibrium messaging
strategy by i). The expected utility difference can then, similarly to above, be derived as

∆Ui(σi) =
∑

j∈Ri,j 6=i

(µlji)2 − (µhji)2 + 2(µlji − µhji)(bj − bi − E[θi|σi])

=
∑

j∈Ri,j 6=i

(
µlji − µhji

) [(
µlji + µhji

)
+ 2(bj − bi − σi)

]
= −2(nRi

− 1)
(
µhji − µlji

) [µlji + µhji
2

+
∑

k∈Ri,k 6=i

{
bk

nRi
− 1

}
− bi − σi

]

This expression implies that a truthtelling equilibrium exists if and only if for every player
i and every σli < σhi

σli ≤
σli + σhi

2
+

∑
k∈Ri,k 6=i

{
bk

nRi
− 1

}
− bi ≤ σhi
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⇔

∣∣∣∣∣ ∑
k∈Ri,k 6=i

{
bk

nRi
− 1

}
− bi

∣∣∣∣∣ ≤ σh − σl

2
.

If we assume that all players have the same signal space, this condition is tight-
est for the player whose bias bi is furthest away from the other players’ average bias,∑

j∈Ri,j 6=i bj/(nRi
− 1), and for the two signals that are closest together.

It is immediate from the expression above that (i) truthtelling is impossible if bias
differences are too high, (ii) adding moderates can establish truthtelling as it can move
the average of the other players closer to each player’s bias (e.g. consider a room with 2
people with differing biases, then adding a player with the average bias can only help).
To state this formally, consider first the expected payoff of player i when choosing room
Ri and expecting a given (e.g. equilibrium) room allocation:

− E

 ∑
j∈Rtruth

i ,j 6=i

(µij − θj) +
∑

j 6∈Ri,j∈Rbab
i

(µ̄j − θj)

2

+ α
∑

j∈Ri,j 6=i

bj − bi +
∑

k∈Rtruth
i ∪{j}

(µjk − θk) +
∑

k 6∈Ri,k∈Rbab
i \{j}

(µ̄k − θk)

2

+α
∑
j 6∈Ri

bj − bi +
∑

k∈Rtruth
j ∪{j}

(µjk − θk) +
∑

k 6∈Ri,k∈Rbab
j \{j}

(µ̄k − θk)

2
where we denote E[θj] as µ̄j, the set of players babbling in room Rj in the messaging

equilibrium of the given room allocation as Rbab
j and the set of players sending truthful

messages in room Rj in the messaging equilibrium of the given room allocation as Rtruth
j .

Note that most of the terms drop out in the expression above as signals are assumed
to be independent and therefore E[µij − θj] = 0 and also E[(µij − θj)(µik − θk)] = 0.
Consequently, the expression above can be rewritten as

−
∑

j∈Rtruth
i ,j 6=i

E
[
(µij − θj)2]− ∑

j 6∈Ri,j∈Rbab
i

E
[
(µ̄j − θj)2]

−α
∑

j∈Ri,j 6=i

(bj−bi)2−α
∑

j∈Ri,j 6=i

∑
k∈Rtruth

i ∪{j}

E
[
(µjk − θk)2]−α ∑

j∈Ri,j 6=i

∑
k 6∈Ri,k∈Rbab

i \{j}

E
[
(µ̄k − θk)2]

−α
∑
j 6∈Ri

(bj − bi)2−α
∑
j 6∈Ri

∑
k∈Rtruth

j ∪{j}

E
[
(µjk − θk)2]−α∑

j 6∈Ri

∑
k 6∈Ri,k∈Rbab

j \{j}

E
[
(µ̄k − θk)2]

As we cannot rule out mixed strategies, this expression will not simplify as neatly as
in the main text. However, we can already see from here that a player’s payoff is higher if
another player is truthtelling than when he is babbling or mixing. This observation will
be enough for our purposes.

28



To state our results we first introduce some notation. Let σ = min{|σj − σk| : j 6=
k, σj, σk ∈ Σ} and σ̄ = max{|σj − σk| : j 6= k, σj, σk ∈ Σ} and furthermore, b̄ =
maxi{|nbi −

∑
j bj|}. We will denote by Bη the set of biases scaled by η; that is, it

contains all the elements ηbi. We will use this to talk about more spread out biases. If
the set of biases is Bη with η > 1, then biases are more spread out.

Proposition 18. If σ ≥ 2b̄/(n− 1), then a single room in which all players are truthtelling
is both welfare maximizing and an equilibrium.
Let the set of biases be Bη and fix all parameter values apart from η. Generically, full
separation is welfare maximizing and an equilibrium if η is sufficiently high.

Proof of proposition 18: Recall that a truthtelling equilibrium exists if and only if
for all players i

∣∣∣∑k 6=i{bk/(n− 1)} − bi
∣∣∣ ≤ (σh − σl)/2 for every σh > σl in Σ. This can

be rewritten as |
∑

k{bk} − nbi| /(n− 1) ≤ (σh − σl)/2. The condition in the proposition
ensures that this inequality holds for all players and all signals. Clearly, having all players
in one room and telling the truth is welfare optimal whenever it is feasible.

If
∣∣∣∑k∈Ri,k 6=i{bk/(n− 1)} − bi

∣∣∣ > (σh−σl)/2, then i will not be truthful when receiving

either signal σl or σh. Generically,
∣∣∣∑k∈Ri,k 6=i{bk/(n− 1)} − bi

∣∣∣ 6= 0 for any room configu-
ration containing players from more than one bias group. (This follows from the finiteness
of players which obviously implies that the number of such room configurations is finite.)
Now observe that the left hand side of the non-truthtelling inequality is scaled by η while
the right hand side is not. That is, for η sufficiently high player i will report the highest
(lowest) signal in Σ in all rooms in which

∑
k∈Ri,k 6=j bk < nRi

bi (
∑

k∈Ri,k 6=j bk > nRi
bi).

Put differently, any room that contains one or more players of a bias not equal to bi will
lead to totally uninformative messages by i if η is sufficiently high. For high enough η,
this holds true for all players and it is then obvious that full separation is both welfare
maximizing and an equilibrium.

8.2. Continuum of signals

In this subsection we consider the messaging game in a setup that differs from the one in
the paper by assuming that the signal space is not binary but a continuum. That is, we
take the room allocation as given and analyze equilibrium messaging strategies. Room
choice is considered briefly towards the end of the section. Occasionally, we will refer to a
player’s signal as his “type”. Instead of replicating the derivation of ∆Ui(σi) from section
8.1 we simply refer the reader at some points to it.

The main reason why our model is so tractable is that we can consider equilibrium
incentives player by player. That is, player j’s messaging strategy does not affect player
i’s incentives when deciding which message to take. This can be nicely seen from (9)
where the only factors influencing preferences over messages are the beliefs induced by
the messages, the bias distribution in the room and player i’s signal.
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We will first derive a few results that apply to general finite as well as infinite signal
spaces. Signals are without loss of generality viewed as posteriors, i.e. σki = E[θi|σki ].
Similarly, messages can – in equilibrium – be equated with the beliefs they induce. The
following lemma states that the support of player i’s message strategy is quite small: In
fact, each type mixes at most between two messages and these messages are in some sense
“adjacent”.

Lemma 5. In equilibrium, the support of type σki ’s strategy consists of at most two ele-
ments. If type σki mixes between two messages, then there is no message inducing a belief
in between the two beliefs induced by the messages in his support.

Proof of lemma 5: The indifference condition requires that σi is indifferent between any
two messages in his support. Denoting the messages as l and h which lead in equilibrium
to beliefs µl and µh (by the other players concerning θi), this indifference condition can,
as derived in section 8.1, be written as

µl + µh

2
+

∑
k∈Ri,k 6=i

{
bk

nRi
− 1

}
− bi − σi = 0. (9)

The crucial insight is that – given that σi is indifferent between µl and µh, σi strictly
prefers inducing any belief µ̃ ∈ (µl, µh) to either µl or µh. To see this note that

µl + µ̃

2
+

∑
k∈Ri,k 6=i

{
bk

nRi
− 1

}
− bi − σi < 0 < µ̃+ µh

2
+

∑
k∈Ri,k 6=i

{
bk

nRi
− 1

}
− bi − σi

by the indifference condition. This implies that µ̃ is strictly preferred to µl and µh (see
∆Ui(σi) as derived in section 8.1). It follows that a type can only mix between two
messages µl and µh in equilibrium if these two beliefs are “adjacent”, i.e. there is no
message inducing a belief between µl and µh.

In case of mixing, each message is only used by few signal types. Furthermore, there
is a standard order property in the sense that higher types send higher messages.

Lemma 6. Each message is used by at most two types that use truly mixed strategies. If a
type σi mixes between µl and µh > µl, then σki is the highest (lowest) type using message
µl (µh).

Proof of lemma 6: Suppose to the contrary that three types σki with k = 1, 2, 3 (i) use
truly mixed strategies and (ii) use a message inducing belief µ with positive probability.
As each type mixes only over two adjacent messages (see lemma 5), this would imply that
at least two of the three types have the same support. Clearly, indifference condition (9)
cannot be satisfied for different types and the same support µl and µh. Consequently,
each message is used at most by two types that mix.
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From the indifference condition, (9), and the expression ∆Ui(σi) it is clear that all
types below (above) σi strictly prefer µl over µh (µh over µl).

The order property of the previous lemma can be extended. In equilibrium, higher
signal types send weakly higher messages. This does not exclude the possibility that one
signal type mixes or that several signal types pool on the same message.

Lemma 7. The induced belief µk is weakly increasing in the received signal σki .

Proof of lemma 7: Take two signal types σhi and σli with σhi > σli. Suppose contrary
to the lemma that µ(σli) > µ(σhi ). In equilibrium σli must prefer sending his message to
sending the message that σhi sends in equilibrium, i.e.

µ(σli) + µ(σhi )
2

+
∑

k∈Ri,k 6=i

{
bk

nRi
− 1

}
− bi − σli ≤ 0.

If the previous inequality holds, then it holds strictly with σhi in place of σli < σhi . That is,
σhi strictly prefers µ(σli) over µ(σhi ) which contradicts that σhi induces µ(σhi ) in equilibrium.

After these preliminaries, we turn now to a model with a continuum of signals. Let
signal σi, i.e. player i’s ex post belief E[θi], be distributed according to some distribution Φ
with density φ > 0 on an interval, say [0, 1] for simplicity. Lemmas 6 and 7 imply then that
the equilibrium is a partition of [0, 1]. Note that truthfulness, i.e. truthfully revealing one’s
signal no matter what the signal is, is only feasible if ∆i ≡ bi−

∑
k∈Ri,k 6=i bk/(nRi

−1) = 0.
That is, truthfullness is only an equilibrium if all players in a room share the same bias.
Furthermore, the partition will be finite with the maximal number of partition elements
being less than 1 + 1/(2|∆i|). Finiteness is straightforward: If the partition was not
finite, there would be types σi for which µ(σi) ≈ σi and messages arbitrarily close to
σi exist. But for ∆i 6= 0, some of these types would clearly want to misrepresent. The
upper bound on the number of partition elements follows from the following observation:
Let σt−1

i , σti and σt+1
i be consecutive partition boundary type in an equilibrium partition.

Then σti has to be indifferent between the two messages µt = E
[
σi|σi ∈ [σt−1

i , σti ]
]

and
µt+1 = E

[
σi|σi ∈ [σti , σt+1

i ]
]

which means

µt+1 + µt = 2σti + 2∆i.

As µt+1 ≤ σt+1
i and µt ≤ σti , this implies that σt+1

i + σti ≥ 2σti + 2∆i or equivalently
σt+1
i − σti ≥ 2∆i. Hence, every partition element (with exception of the first) has length

of at least 2∆i if ∆i > 0 (for ∆i < 0 a similar argument using lower instead of upper
bounds for µ· works analogously). If a partition equilibrium with T partition elements
exists, then it can be computed similarly to Crawford and Sobel (1982): Say ∆i > 0 and
denote the partition by (σ0

i = 0, σ1
i , . . . , σ

T
i = 1). For t ∈ {1, . . . , T − 1}, the indifference
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condition of σti determines σt+1
i , i.e.

∫ σt+1
i

σt
i

σi dΦ(σi)
Φ(σt+1

i )− Φ(σti)
= 2σti + 2∆i −

∫ σt
i

σt−1
i

σi dΦ(σi)

Φ(σti)− Φ(σt−1
i )

. (10)

That is, as soon as σ1
i is fixed, all other values are determined inductively by this condition.

Note that not any σ1
i belongs to an equilibrium partition as eventually the indifference

condition for σT−1
i has to yield σTi = 1. If the following monotonicity condition (M) holds,

then there is an essentially unique equilibrium with T partition elements for all T up to
some T̄ .

(M): Partition cutoff types obtained from some σ1
i through induction by (10) are

increasing in σ1
i , i.e. σti(σ1

i ) > σti(σ1
i
′) if and only if σ1

i > σ1
i
′.

To give an example, suppose Φ is the uniform distribution on [0, 1]. Then µt =
(σt−1

i + σti)/2 and (10) becomes

σt+1
i = σti + (σti − σt−1

i ) + 4∆i

which clearly satisfies (M). For t ≥ 2, this can be solved as

σti = tσ1
i + 4∆i

t−1∑
j=1

j.

A T element partition has to satsify σTi = 1 or 1 = Tσ1
i + 4∆i

∑T−1
j=1 j which means

that σ1
i (T ) =

[
1− 4∆i

∑T−1
j=1 j

]
/T . If 1 − 4∆i

∑T−1
j=1 j < 0, then no equilibrium with

T partition elements exists. This illustrates that a higher ∆i leads to a less informative
equilibrium in the sense that there are less partition elements. The derivation of the most
informative equilibrium for the case ∆i < 0 is analogous.

Regarding room choice, we do not attempt a full characterization of the equilibrium.
However, our result that sufficiently large polarization makes segregation generically op-
timal follows directly from the derivations above: Let the set of biases be such that no
possible room has ∆i = 0 for some player i unless the room consists only of players sharing
the same bias. This is satisfied for generic bias values. Consider a Bη scaling of the biases
as in the paper. Note that ∆i, now denoted as ∆i(η) = η∆i(1), scales linearly in η. For
η sufficiently high the upper bound on the number of partition elements 1 + 1/(2|∆i(η)|)
will be below 2 and babbling will be the only equilibrium. This is true in all possible
rooms not consisting of only players sharing the same bias. Note that the number of
possible rooms is finite due to the finite number of the players and therefore there exists
a η̄ such that babbling is the unique equilibrium in all rooms in which players do not
share the same bias for all η ≥ η̄. It follows immediately that full segregation is optimal
and an equilibrium for η ≥ η̄. Similarly, it is straightforward that equilibrium partitions
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can be arbitrarily fine as η → 0. Consequently, full integration is welfare optimal and an
equilibrium for η sufficiently low.10

8.3. Single state

In this variation, a state of the world θ ∈ Θ is distributed according to distribution F .
The state is unobserved but each player i out of n players receives a noisy signal σi ∈ Σ of
the state where σi is conditional on θ distributed according to Gθ. The signals are private
and – conditional on the state – independent across players. (The latter assumption is
relaxed at the end of this subsection.) After observing his signal, a player can access one
of K ≥ 2 “rooms” and send a message mi ∈M. The message is received by all players in
the same room. Afterwards each player takes an action ai.

The payoff of player i is u(a, bi, θ) = −(ai − bi − θ)2 − α
∑

j 6=i(aj − bi − θ)2 where a
denotes the vector of actions of all players and bi ∈ B is a commonly known“bias”of player
i. That is, player i would like that all players choose the action bi + θ. The parameter α
measures the relative weight players assign to other players’ behavior. Players are assumed
to maximize expected utility.

The solution concept used is perfect Bayesian Nash equilibrium.
For simplicity, let Θ = {θh, θl} and Σ = {σl, σh} and the signal structure is such

that prob(σj|θj) = p > 1/2. We let the message space be binary as well: M = {h, l}.
Furthermore, we let B = {0, b} and assume that there is at least one player with each of
the two biases.

Action choice Denote the belief of player i that the state of the world is high by µi (after
observing his signal and listening to all the messages in his room). The expected utility
of player i can then be written as

U(a, µi) = −a2
i − E

[
(bi + θ)2]+ 2ai(bi + E[θ])− α

∑
j 6=i

E
[
(aj − bi − θ)2] (11)

= −a2
i − µi(bi + θh)2 − (1− µi)(bi + θl)2 + 2ai(bi + µiθ

h + (1− µi)θl)

−α
∑
j 6=i

[
µi(aj − bi − θh)2 + (1− µi)(aj − bi − θl)2]

The optimal action choice of player i is then

a∗i = bi + E[θ] = bi + θl + µi(θh − θl). (12)
10To see this it is sufficient to note that (i) full integration is the unique welfare optimal allocation

for η = 0, i.e. in a situation in which all players have the same bias, and (ii) information (in the most
informative messaging equilibrium) in any given room allocation approaches full information as η → 0.
This implies that welfare in a given room allocation approaches welfare under full information in this
room allocation as η → 0.
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Cheap talk The cheap talk game can – as usual – have several equilibria. There is
always a babbling equilibrium where the message is independent of the observed signal
and therefore nothing about the state of the world is learned, e.g. mi(σi) = σh for all
σi ∈ Σ and µi = p (µi = 1 − p) if σi = σh (σi = σl). We will focus on most informative
equilibria, that is equilibria where mi(σi) = σi with as high probability as possible.

Truthful communication is an equilibrium for a given room if all players in this room
have the same bi. To see this, suppose player i could maximize his expected utility (1) not
only over ai but also over the aj of all the players in his room. Clearly, he would choose the
same action for everyone namely bi+θl+µi(θh−θl). Deviating from the truthful strategy
is not profitable because by adhering to truthfulness player i ensures that all other players
in the room choose precisely the action he would have chosen for them (while deviating
changes the other players’ beliefs and therefore their optimal action). Note that this
argument depends on all players having the same bias and truthful communication is
normally not an equilibrium if players in a given room have different biases. We state this
result for future reference in the following lemma.

Lemma 8. If all players in a given room have the same bias, truthful communication in
this room is the most informative equilibrium of the cheap talk game (taking room choice
as given).

We will now analyze the cheap talk problem in rooms in which players with both types
of biases are present. In particular, we will be interested in the case of strong differences
in opinion, i.e. the case where b is sufficiently large.

Lemma 9. Let n0 ≥ 1 players with bias bi = 0 and nb ≥ 1 players with bias bi = b be in
a room. There exists a b̄ such that for b ≥ b̄ babbling is the only equilibrium of the cheap
talk game.

Proof of lemma 9: Suppose that there is a non-babbling equilibrium, i.e. an equilib-
rium where belief µj depends on the messages of players i 6= j. Let i be a player affecting
j’s belief. Without loss of generality, say µj is lower if i sends the message l and higher if i
sends the message h. By Bayesian updating and independence of the signals, µk will then
be lower when i sends message l than when he sends message h for all k 6= i. (Moreover
two players that observe the same signal themselves and are in the same room will have
the same belief because of Bayesian updating and independence of signals.) Hence it is
without loss of generality to assume that bi 6= bj. For concreteness, let bi = 0 and bj = b

(the proof for the opposite case is analogous).
Now suppose i observes signal σh. We will show that it is optimal for i to send message

l if b is sufficiently high. To see this, denote the change in i’s expected utility (11) when
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sending message l instead of message h as ∆Ui 11

∆Ui = −α
∑
j 6=i

E
[
aj(l)2 − aj(h)2 − 2θ(aj(l)− aj(h))

]
= −α

∑
j 6=i

E
[(
µj(l)2 − µj(h)2) (θh − θl)2 + 2(µj(l)− µj(h))(θh − θl)(bj + θl − θ)

]
= α

∑
j 6=i

E
[
(µj(h)− µj(l))

(
θh − θl

)
∗
(
(µj(h) + µj(l))(θh − θl) + 2(bj + θl − θ)

)]
= α

(
θh − θl

)
nbE

[
(µj(h)− µj(l)) ∗

(
(µj(h) + µj(l))(θh − θl) + 2(b+ θl − θ)

)]
+α
(
θh − θl

)
(n0 − 1)E

[
(µj(h)− µj(l)) ∗

(
(µj(h) + µj(l))(θh − θl) + 2(θl − θ)

)]
= α

(
θh − θl

)
(nb + n0 − 1)

E
[
(µj(h)− µj(l)) ∗

(
(µj(h) + µj(l))(θh − θl) + 2

(
nbb

nb + n0 − 1
θl − θ

))]
.

If b ≥ θh(nb + n0 − 1)/(θlnb), the term inside the expectation is positive for any θ and
therefore ∆Ui is definitely strictly positive. Hence, i strictly prefers sending message
l to message h and i receives signal σh. This would imply that i sends message l with
probability 1 if the signal is σh in this equilibrium. But this contradicts that µj(l) > µj(h).
Hence, choosing b̄ = θhN/θl where N is the total number of agents implies b̄ ≥ θh(nb +
n0 − 1)/(θlnb) and gives the result.

Lemma 9 implies that – given a finite number of players – the only way allowing
meaningful communication if differences in opinion is high is to have only players with
the same bias in a room.

If the differences in opinion are minimal, i.e. b is very low, truthful communication is an
equilibrium for any room composition. The reason is the coarseness of the signal structure:
Lying in the message game leads – in a truthful equilibrium – to a discrete reaction of
all other players in the room. If the difference in bias is very small, this discrete reaction
is “too high”, i.e. even those players with a (slightly) different bias react more than the
deviating player would wish for. The following lemma formalizes this generalization of
lemma 8.

Lemma 10. Let there be n0 ≤ n players with bi = 0 and nb ≤ n−n0 players with bi = b in
a room. There exists a b > 0 such that for b ≤ b truthful communication is an equilibrium.

Proof of lemma 10: For b = 0, truthtelling is strictly better than lying (given that
all other players tell the truth). Note that i’s expected utility is continuous in aj and a∗j

is continuous in bj, see (12). Hence, Ui is continuous in bj. However, µj and therefore
a∗j reacts discretely to lying. Consequently, truth-telling is still a best response to truth-
telling for bj > 0 sufficiently small.

11For a more general proof, one could already go from the first line to
α
∑

j 6=i E [(aj(h)− aj(l)) ∗ (aj(h) + aj(l)− 2θ)] and then note that for b high enough even aj(l) > θh.
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From lemma 9 and lemma 10 we know that for b low the most informative equilibrium
in a room with a given configuration is truth-telling and for b sufficiently high the “most
informative” equilibrium is babbling if players with different biases are present. It seems
most likely that b̄ > b. In this case, there are mixed strategy equilibria for b ∈ (b, b̄).

Room choice equilibria We claim that separation is an equilibrium if differences in
opinion, i.e. the parameter b, are sufficiently high.

Proposition 19. If b ≥ b̄, the following strategies constitute an equilibrium:

1. Players with bias 0 (b) go to room 0 (1).

2. A player sends truthful messages if only players of the same type are in his room
and babbles otherwise.

3. Actions are taken according to (12) and beliefs µi are formed using Bayes’ rule
(given the equilibrium strategies in 1 and 2).

This equilibrium is the most informative equilibrium in the sense that no player has more
precise information about the state θ in any other equilibrium.

Proof of proposition 19: Given lemma 9, unilateral deviations to other rooms are not
profitable: Any such deviation would either lead to being alone in a room or babbling.
In either case, the deviating player does not have any information beyond his own signal
about the state of the world. This reduces his expected utility directly. Furthermore,
deviations lead to less information for other players which again lowers the deviating
player’s payoff: Less information for players with the same bias as player i implies that
their actions are further away from bi + θ in expectation. Furthermore, the players with
bj 6= bi choose actions further away to bj + θ if they have less information, i.e. variance
of their choice is increased while the expected value stays the same. Given the strictly
concave loss function, player i looses from this as well.

Lemmas 8 and 9 imply that no profitable deviation in the cheap talk stage exists. As
(12) gives the optimal action (given one’s beliefs), no deviation in choosing one’s action
is profitable either.

By lemma 9, a given player i cannot observe more “non-babbling” messages than in
the suggested equilibrium in any other equilibrium. Given that communication is truthful
in the suggested equilibrium, player i can therefore not have more precise information
about θ in any other equilibrium.

For b ≤ b, the most informative equilibrium is clearly that every player goes to the
same room and truthfully reports his signal.
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Welfare optimal room allocation Suppose a social planner could allocate players to
rooms. After being assigned a room, players play the same game as above; that is, the
planner has no influence on messages or actions. We claim that for b ≥ b̄ the welfare
optimal allocation is to assign everyone with bias 0 in one room and everyone with bias b
in another room, i.e. the equilibrium described in proposition 19 is welfare optimal. The
idea is the following: For b ≥ b̄, the cheap talk game in a room where players with both
bias types are present will only have a babbling equilibrium by lemma 9. Consequently,
any room allocation that assigns players with different biases to the same room will lead to
completely uninformative messages and is therefore equivalent to putting every player to
a separate room. By assigning players with the same bias to the same room, the planner
achieves the most informative equilibrium. That is, truthful communication is possible in
each room. The additional information ensures that player with the same bias as player i
choose actions closer to bi + θ. Furthermore, the players with bj 6= bi choose actions closer
to bj + θ, i.e. the variance is reduced while the expected value stays the same. Given
the strictly concave loss function, player i gains from this as well. Note that the welfare
notion can be chosen quite strict in the sense that the described allocation maximizes the
welfare of every agent. That is, if agent i could dictatorially decide the room allocation
(without having any influence on the messages or actions taken by other players), the
same allocation would result.

Similarly, the most informative equilibrium is welfare optimal in the strong sense
established above if b ≤ b.

Correlated signals Finally, we want to discuss an extension to this model: People with
similar biases might be similar in other respects and therefore have similar information.
More precisely, one could imagine that the signals of people with the same bias are pos-
itively correlated conditional on the state. The following paragraphs shows that similar
results as before hold when signals are correlated.

The main difficulty is to show a result similar to lemma 9 all other results go through
without change. The following lemma states that in the limit as b grows large no infor-
mation can be transmitted in equilibrium. The result is somewhat weaker than lemma 9
but similar in nature.

Lemma 11. Let n0 ≥ 1 players with bias bi = 0 and nb ≥ 1 players with bias bi = b be
in a room. Let the signal technology be such that signals are not perfectly correlated and
such that all signal vectors have strictly positive probability. For every ε > 0, there exists
a bε such that Em−i,σj

[
µj(mi = σh)− µj(mi = σl)|σi

]
< ε in every equilibrium.

Proof of lemma 11: Suppose that there is a non-babbling equilibrium, i.e. an equilib-
rium where belief µj depends on the messages of players i 6= j. Let i be a player affecting
j’s belief. Without loss of generality, say µj is lower if i sends the message l and higher if
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i sends the message h. By Bayesian updating, µk will then be lower when i sends message
l than when he sends message h for all k 6= i. First, let bi 6= bj. For concreteness, let
bi = 0 and bj = b (the proof for the opposite case is analogous).

Now suppose i observes signal σh. To make an informative equilibrium possible, the
change in i’s expected utility (1) when sending message l instead of message h, ∆Ui, must
not be strictly positive:

∆Ui = −α
∑
j 6=i

E
[
aj(l)2 − aj(h)2 − 2θ(aj(l)− aj(h))

]
= −α

∑
j 6=i

E
[(
µj(l)2 − µj(h)2) (θh − θl)2 + 2(µj(l)− µj(h))(θh − θl)(bj + θl − θ)

]
= α

∑
j 6=i

E
[
(µj(h)− µj(l))

(
θh − θl

)
∗
(
(µj(h) + µj(l))(θh − θl) + 2(bj + θl − θ)

)]
> α

∑
j 6=i

E
[
(µj(h)− µj(l))

(
θh − θl

)
∗
(
(µj(h) + µj(l))(θh − θl) + 2(bj + θl − θh)

)]
= α

(
θh − θl

) (
nbbE

[
µj(h)− µj(l)|bj = b, σi = σh

]
+
∑
j 6=i

E
[
(µj(h)− µj(l))(µj(h) + µj(l)− 2)(θh − θl)

])
> α

(
θh − θl

) (
nbbE

[
µj(h)− µj(l)|bj = b, σi = σh

]
− 2N(θh − θl)

)
whereN = nb+n0. Clearly, the last expression is greater than zero if bE

[
µj(h)− µj(l)|bj = b, σi = σh

]
>

2N(θh − θl)/nb. Hence, bε = 2N(θh − θl)/(nbε) gives the result in the lemma.
Second, let bj = bi. Note that the result above says that i’s message contains no

information in the limit as b→∞. It follows that given that the signal technology is (i)
not perfectly correlated and (ii) puts strictly positive probability on all signal vectors, the
result has to hold also for j with bj = bi.12

9. Follower model

This section replicates our results for a slightly different model in which instead of choosing
“rooms” in the first stage, players choose which other players to “follow”. Players are
unrestricted regarding the size and composition of the set of players they follow. In
the second stage every player sends one cheap talk message to his “followers”. We will
adopt the convention that each player follows himself (which is immaterial for the results
but allows us to proceed with some of the derivations analogously to the paper.) Signal
technology and preferences are the same as in the paper.

12The two assumptions avoid that lying leads to a zero probability event where beliefs cannot be
determined by Bayes’ rule.
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Clearly, the optimal action is still

a∗i = bi +
n∑
j=1

E[θj].

More importantly, lemma 1 still applies and we can concentrate on pure strategy
equilibria.

Lemma 12. Let (m1, . . . ,mn) be equilibrium strategies. If mi is a mixed strategy, then there
also exists an equilibrium with strategies (mt

i,m−i), where mt
i is the truthful strategy.

Proof. Denoting i’s followers by Fi, the set of player i is following by fi and fixing
some equilibrium (m1, . . . ,mn), player i’s expected payoff when sending message mi to Fi
can be written as

Ui(mi|σi) = E

−(ai(m−i,Ri
, σi)− bi −

n∑
k=1

θk

)2

− α
∑
j 6∈Fi


(
aj(m−i,fj

, σj)− bi −
n∑
k=1

θk

)2


−α
∑

j∈Fi,j 6=i


(
aj(mi,m−i,fj

, σj)− bi −
n∑
k=1

θk

)2

∣∣∣∣∣∣σi
 .

which can be split in a part that is independent of i’s message mi and a part that depends
on mi:

Ui(mi) = E

const− α ∑
j∈Fi,j 6=i

(
aj(mi,m−i,fj

, σj)− bi −
n∑
k=1

θk

)2
∣∣∣∣∣∣σi
 .

Specifically, sending message mh gives expected payoff

Ui(mh) = E

const− α ∑
j∈Fi,j 6=i

(
bj − bi + µhji +

∑
k 6=i

µjk − θi −
∑
k 6=i

θk

)2
∣∣∣∣∣∣σi


where µhji = E[θi|mi = mh] , i.e. µhji is the belief of a player j (following i) concerning θi if
player i sends message mh. Note that this belief is the same for all players j 6= i following
i. Sending message ml gives

Ui(ml) = E

const− α ∑
j∈Fi,j 6=i

(
bj − bi + µlji +

∑
k 6=i

µjk − θi −
∑
k 6=i

θk

)2
∣∣∣∣∣∣σi
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where µlji = E[θi|mi = ml]. The difference in expected payoff is then

∆Ui(σi) = (Ui(mh)− Ui(ml))/α

= −
∑

j∈Fi,j 6=i

E

[
µhji

2 − µlji
2 + 2(µhji − µlji)

(
bj − bi +

∑
k 6=i

µjk − θi −
∑
k 6=i

θk

)∣∣∣∣∣σi
]

= −2(µhji − µlji)
∑

j∈Fi,j 6=i

[
µhji + µlji

2
+ bj − bi − E [θi|σi]

]

= 2(µhji − µlji)(nFi
− 1)

[
−
µhji + µlji

2
−
∑

j∈Fi,j 6=i bj

nFi
− 1

+ bi + E [θi|σi]

]
(13)

where nFi
denotes the number of elements in Fi. (For the transformation to line 3, we

make use of the fact that µ·ji is the same for all j ∈ Fi \ {i}.)
Player i is only willing to choose a mixed strategy after receiving signal σi if ∆Ui(σi) =

0. From expression (13) it is clear that this can only be true for at most one signal as
E [θi|σi] varies in σi. Furthermore, Ui(σh) = 0 implies Ui(σl) < 0 and similarly Ui(σl) = 0
implies Ui(σh) > 0.

Now suppose i’s equilibrium strategy mi is mixed after signal σh. Then, ∆Ui(σh) = 0
implies ∆Ui(σl) = 2(µhji−µlji)(nFi

−1)(1−2p) < 0 and therefore mi(σl) = ml which implies
µhji = p as a mh is only sent by i after receiving signal σh. This implies (µhji+µlji)/2 ≥ 1/2
as µlji ≥ 1 − p. Now consider the equilibrium candidate (mt

i,m−i). With the truthful
strategy mt

i, µthji = p and µtlji = 1− p and therefore (µthji + µtlji)/2 = 1/2. This implies that
∆Ui(σh) > 0 in the equilibrium candidate (mt

i,m−i), i.e. truthful reporting is optimal
for i after receiving signal σh. In the equilibrium candidate (mt

i,m−i), truthful messaging
is still optimal after signal σl as well: From p > 1/2, µhji ≤ p and µlji ≤ 1/2 it follows
that −1/2 + (1 − p) < −

(
µhji + µlji

)
/2 + p. As in the original equilibrium (mi,m−i) we

had ∆Ui(σh) = 0 and therefore −
(
µhji + µlji

)
/2 + p =

∑
j∈Ri,j 6=i bj/(nFi

− 1) + bi, we get
that −1/2 + 1 − p <

∑
j∈Fi,j 6=i bj/(nFi

− 1) + bi and therefore Ui(σl) < 0 in the truthful
equilibrium candidate (mt

i,m−i). Hence, truthful messaging is i’s best response in the
equilibrium candidate (mt

i,m−i). Finally, note that the ∆Uj(σj) for j 6= i is not affected
by changing i’s strategy from mi to mt

i. Hence, (mt
i,m−i) is an equilibrium.

The argument in case i’s strategy is mixed after signal σl is analogous.
The previous lemma (and its proof) allow a characterization of the equilibrium mes-

saging strategy in the most informative equilibrium and an analogue to theorem 1.

Theorem 5. Let b =
∑

k∈Fi
bk

nFi
be the mean bias of i’s followers. In the most informative

equilibrium in this room, a player i tells the truth to his followers if

bi ∈
[
b− nFi

− 1
nFi

(p− 1
2

), b+ nFi
− 1

nFi

(p− 1
2

)
]
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and babbles otherwise.

Proof. As in theorem 1 in the paper.
We proceed by turning to stage 1. Take some follower allocation as fixed, then the

expected payoff of player i following players in fi while having followers Fi equals

Ui = −E

 ∑
j∈f truth

i ∪{i}

(µij − θj) +
∑

j 6∈f truth
i ∪{i}

(1
2
− θj)

2

+α
∑
j 6=i

bj − bi +
∑

k∈f truth
j ∪{j}

(µjk − θk) +
∑

k 6∈f truth
j ∪{j}

(1
2
− θk)

2

where f truthi are the players in fi that send truthful/informative messages in equilibrium
and fi \ f truthi are those players in fi that are babbling.

For any i 6= j, the two values of θi and θj are independent; the same is true for µij and
µik. Hence E [µij − θj] = 0 and E [(µij − θj) (µik − θk)] = 0, which means that the above
expression can be rewritten as

Ui = −
∑

j∈f truth
i ∪{i}

E
[
(µij − θj)2]− ∑

j 6∈f truth
i ∪{i}

E
[
(1
2
− θj)2

]

−α
∑
j 6=i

(bj − bi)2 − α
∑
j 6=i

∑
k∈f truth

j ∪{j}

E
[
(µjk − θk)2]− α∑

j 6=i

∑
k 6∈f truth

j ∪{j}

E
[
(1
2
− θk)2

]
.

Now note that E [(µjk − θk)2] can have two possible values in the most informative equilib-
rium: If k ∈ f truthj ∪{j}, i.e. if j has received information about θk, then E [(µjk − θk)2] =
p(1 − p). If j has not received information about θk, then E [(µjk − θk)2] = 1

4 . (We can
check that information always reduces variance and increases welfare since p > 1

2 and
hence p(1 − p) < 1

4 .) This allows to denote utility in the notation of the paper using
pieces of information

Ui = −α
∑
j 6=i

{(bj − bi)2} − 1/4 [n+ α(n− 1)n] + (1/4− p(1− p))

[
ζi + α

∑
j 6=i

ζj

]

and express welfare as

W =
∑
i

Ui =
∑
i

[
−α
∑
j 6=i

{(bj − bi)2} − 1/4 [n+ α(n− 1)n] + (1/4− p(1− p))

[
ζi + α

∑
j 6=i

ζj

]]

= −α
n∑
i=1

∑
j 6=i

{(bj − bi)2} − 1
4
n2 [1 + α(n− 1)] + (p− 1

2
)2(1 + α(n− 1))

∑
i

ζi.

In this expression, all terms are model parameters except for the sum over all ζi, which
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shows that welfare is linearly increasing in
∑

i ζi.
We are now ready to analyze equilibrium follow decision. The following describes

player j’s best response: Hold arbitrary stage 1 decisions of players other than j fixed.
From the expression for Ui in terms of pieces of information, it is clear that it is uniquely
optimal for j to follow i if i tells the truth given the stage 1 decisions of the other
players and j’s decision to follow. Furthermore, j is indifferent between following i and
not following i if i babbles regardless of j’s choice. Last but not least, j optimally does
not follow i if following leads to babbling by i while not following allows informative
messages by i. This leads to the following result which is in line with the empirically
found homophily.

Proposition 20. It is weakly dominant for j to follow i if |bj − bi| ≤ (p− 1/2)/2.

Proof. From the reasoning of the previous paragraph, it is sufficient to show that
j following i will not cause i to babble (given some arbitrary first stage choices of the
other players) if |bj − bi| ≤ (p − 1/2)/2. If j follows i, then nFi

≥ 2 (recall that by
convention i ∈ Fi) which implies (nFi

− 1)/nFi
≥ 1/2. Consequently, i will tell the truth

if j is the only player following i. Now consider the case where some players (other
than j) are following i. If i is truthtelling without j following him, then, by theorem 5,
bi ≥ b̄− (p−1/2)(nFi

−1)/nFi
where b̄ is the average bias of players other than j following

i. By the condition of the proposition bi ≥ bj + (p− 1/2)/2 and bringing the previous two
inequalities together yields

bi ≥
(nFi
− 1)b̄+ bj
nFi

− (p− 1/2)
n2
Fi
− 3nFi

/2 + 1
n2
Fi

which implies

bi ≥
(nFi
− 1)b̄+ bj
nFi

− (p− 1/2) nFi

nFi
+ 1

.

Similarly, bi ≤ b̄+ (p− 1/2)(nFi
− 1)/nFi

and bi ≤ bj + (p− 1/2)/2 imply

bi ≤
(nFi
− 1)b̄+ bj
nFi

+ (p− 1/2)
n2
Fi
− 3nFi

/2 + 1
n2
Fi

.

Consequently, i will be truthtelling when j follows him if i is truthtelling when j does not
follow him.

The simple characterization of equilibria above makes it straightforward to characterize
the structure of the most informative and therefore welfare maximizing equilibrium in
stage 1. The welfare optimal set of followers for i can be determined independently of the
welfare optimal set of followers of other players. In fact, it is given by simple maximization
problem:
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Proposition 21. The welfare optimal set of i’s followers, F ∗i , is given by the maximization
problem maximizing the number of elements of Fi subject to the truthtelling constraint

bi ∈
[∑

j∈Fi
bj

nFi

− nFi
− 1

nFi

(p− 1/2),
∑

j∈Fi
bj

nFi

+ nFi
− 1

nFi

(p− 1/2)
]

(14)

where nFi
=
∑

j∈Fi
1j∈Fi

. The welfare optimal follower allocation (F ∗1 , . . . , F ∗n) is an
equilibrium.

Proof. Welfare is increasing in the pieces of information provided in equilibrium. The
maximal number of pieces of information provided by i is given by the results of the
maximization problems in the proposition. As there are no constraints on how many
players to follow, (F ∗1 , . . . , F ∗n) is feasible. It is also an equilibrium: No player i wants to
follow an additional player j as – by the definition of (F ∗1 , . . . , F ∗n) – this would lead to
babbling by j. As each player is only following players that are truthtelling, no player
i ∈ F ∗j benefits from not following j.

Note two implications of the previous proposition. First, a pure strategy equilibrium
exists. Second, the welfare optimal follower allocation always coincides with the follower
allocation in the welfare optimal equilibrium.

Let B = {b1, b2, . . . , bn} be a bias configuration. (Note that this is not a set, as several
people can have the same bias.) Assume that B is generic in the sense that no bias is
the average of any set of other biases (except in cases where several people have the same
bias). Now we can consider an alternative bias configuration Bη, with η ∈ (0,∞), which
for every bi in B contains ηbi. Then the following is true:

Theorem 6. (i) If η is sufficiently close to 0, full integration, i.e. Fi = {1, . . . , n} for all
i = 1, . . . , n, is welfare-optimal for bias configuration Bη.

(ii) If η is sufficiently large, full segregation by bias types is generically welfare-optimal
for bias configuration Bη.

Proof. Note that the truthtelling constraint (14) for set of biases Bη can be written as

bi ∈
[∑

j∈Fi
bj

nFi

− 1
η

nFi
− 1

nFi

(p− 1/2),
∑

j∈Fi
bj

nFi

+ 1
η

nFi
− 1

nFi

(p− 1/2)
]
.

For η → 0, this constraint is arbitrary slack while for η →∞ it is arbitrarily strict. The
latter implies that for Bη such that no element is a convex combination of other elements
(not all of which equal to the initial element) no Fi apart from full segregation can satisfy
the constraint.

Example 1. As a straightorward example consider the binary case where bi ∈ {0, b} for all
players. Let nb (n0) be the number of players with bi = b (bi = 0). The welfare optimal
follower allocation is then as follows: Fi consists of all players j with bj = bi and k players
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with bj 6= bi where k is the highest integer such that i’s truthtelling constraint still holds.
This implies the following: A majority player has more followers than a minority player.
A majority player has (weakly) more followers of a different bias type than a minority
player. As b grows larger, players have less and less followers of the other bias type. For
b above some critical b each minority player is only followed by the other members of the
minority. For b above some critical b̃ ≥ b each majority player is only followed by the
other members of the majority.

Moving away from the welfare optimal equilibrium note that other equilibria exist in
stage 1. In particular there are equilibria in which players babble. From the best response
structure we immediately get the following result.

Lemma 13. If player i babbles given followers Fi, then i would still babble if his set of
followers was Fi \ {j} for j ∈ Fi.

Proof. Suppose there existed a j ∈ Fi such that i would not babble with set of
followers Fi \ {j}. In this case, j has a profitable deviation: Not following i will increase
the number of pieces of information of some other players while it will not reduce the
number of pieces he has himself. By α > 0 the deviation is profitable.

The lemma indicates that in equilibrium there can be players that babble because they
are followed by too many other players. These player are however so much over-subscribed
by players with very different biases that they could still not tell the truth if an arbitrary
single player decided not to follow them anymore. That is, they are, so to speak, far away
from being tempted to tell what they know.

Some interesting comparison between extremists and centrists can be made based on
the best response structure of the cheap talk stage. Consider for instance “extremists”,
i.e. players with an unusual high or low bias. These players can send truthful messages if
they are followed by similarly extreme players. These will typically be only a few people
given that only a minority can have “extreme”, i.e. unusually high or low, biases. Now
consider a centrist, i.e. someone whose bias is close to the average of the population.
He can be followed by (nearly) everyone and he can still be truthtelling. In the extreme
case where his bias equals the average bis in the population, indeed everyone will follow
him in the welfare optimal equilibrium and he will be truthtelling. Compare this to
the extremist: If (sufficiently) many people follow an extremist, he will be babbling.
The following proposition uses the same intuition to show that in the welfare optimal
equilibrium centrists have more followers than extremists if the distribution of biases is
single peaked and symmetric.

Proposition 22. Let biases be distributed on an equally spaced finite grid and let the dis-
tribution of biases be single-peaked and symmetric around the mean. Then the number of
followers in the welfare maximal equilibrium is lower, the farther a player’s bias is away
from the mean bias.
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Proof of proposition 22: Denote the mean bias in the population by µb and order –
without loss of generality – players according to their biases, i.e. b1 ≤ b2 ≤ · · · ≤ bn. By
proposition 21, F ∗i is given by maxnFi

subject to |bi−
∑

j∈Fi, j 6=i bj/(nFi
− 1)| ≤ (p− 1/2).

Given the assumptions in the proposition, the solution to this maximization problem is
straightforward: If bi > µb, then Fi is the set of players {i, i + 1, . . . , n} where i ≤ i is
determined such that bi−

∑
j≥i,j 6=i bj/(nFi

−1) ≤ (p−1/2) and bi−
∑

j≥i−1,j 6=i bj/(nFi
−1)| >

(p − 1/2). Similarly, if bi < µb, then Fi is the set of players {1, 2, . . . , ī} where ī ≥ i is
determined such that −bi+

∑
j≤ī,j 6=i bj/(nFi

−1) ≤ (p−1/2) and −bi+
∑

j≤ī+1,j 6=i bj/(nFi
−

1)| > (p− 1/2). For bi = µb, clearly F ∗i = {1, . . . , n}. From the definitions of i, ī and the
single peakedness of the bias distribution, the result follows directly.

10. Mediated talk

In this section we analyze to what extent an impartial mediators can improve communi-
cation in a given room. Instead of sending a message to all players in the room, player i
sends a private message to mediator i. The mediator then makes an announcement that
is heard by all players in the room. Ex ante the mediator commits to a strategy which
maps from the messages he receives into the announcements he makes. This commitment
is the key that allows us to improve communication.

Before going into the details, we want to make a few remarks about the setup. First, we
start with a setting where each player has a separate mediator and each mediator receives
only the message of one player. This allows us to use commitment to improve cheap talk.
There is another version in which all players send messages to the same mediator and we
will come back to this below. Second, our mediators send the same message to each player
in the room. If we allowed the mediator to send private messages to each player in the
room we would effectively destroy the room structure as mediators could effectively create
subrooms and all kind of other network structures. (This is particularly true if we move
to a setting with only one mediator.) To stay in line with our model we therefore assume
that a mediator sends one message received by all players in the room. Furthermore,
our mediators have no information apart from the message that they receives from the
players. In particular, a mediator does not receive messages from players in other rooms.
Again assuming anything else would effectively destroy the room structure.

By an argument akin to the revelation principle, we can focus on mediator strategies
that induce the agents to truthfully reveal their signal. As the only thing the players are
interested in (for choosing their actions) is the expected state θ, it is also without loss to
let mediator i announce a forecast for θi. It is without loss of generality to restrict the
mediator’s strategy such that i believes the forecast for each θj where j 6= i. By Bayesian
rationality, the mediator’s strategy has then to be such that the expected forecast has
to equal the ex ante expected value of θ. The question is whether mediation can lead to
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more truthtelling. Note that for those player in a given room that are truthtelling without
mediation their mediator can commit to truthtelling. (Recall that other players’ strategies
– and therefore also their mediators’ strategies, are irrelevant for player i’s incentives to
tell the truth.) We can consequently focus on those players who are babbling without
mediation and start by giving an example where mediation improves truthtelling.

Let there be three players in the room with b1 = −b, b2 = 0 and b3 = b for some b > 0.
The truthtelling interval without mediation is then [−2(p−1/2)/3, 2(p−1/2)/3] and only
includes player 2 if b > 2(p− 1/2)/3 which will be assumed here. Now suppose mediator
1 commits to the following strategy: Whenever player 1 sends message h, mediator 1
will send message h but if player 1 sends message l the mediator will mix between l

and h with probabilities λ and 1 − λ. This implies that players −i know that i’s signal
was l whenever the mediator sends message l, and therefore µlji = 1 − p, but adopt
belief µhji = (1 − λ(1 − p))/(2 − λ) if they receive message h from the mediator. It is
straightforward that i has an incentive to tell the truth to the mediator if his signal is l.
Therefore, consider i’s incentives when his signal is h. With probability λ the mediator will
send message l regardless of i’s message and this case is therefore irrelevant for comparing
i’s truthtelling incentives. With probability 1−λ i’s message decides whether µji is either
µlji or µhji. Following 13 in the main text (proof of lemma 1), i will therefore have incentives
to tell the truth to the mediator if and only if

−3/2− λ+ λp− p
2− λ

− b

2
− b+ p ≥ 0

which is equivalent to

λ

(
3
2
b− (2p− 1)

)
≥ 3(b− (p− 1/2)).

If b ∈ (2(p− 1/2)/3, p− 1/2), then there exist λ ∈ (0, 1) such that this inequality holds.
This implies that the suggested mediation scheme can improve communication for players
who are just outside the no-mediation truthtelling interval but not for players who are
very far outside this interval. (Of course, the analysis for player 3 is analogous to player
1 in this example).

The strategy of the mediator in the example above is in fact the best the mediator
can possibly do. Note that the problem of player 1 is not to truthfully report message l
but to truthfully report message h. By mixing after message l, the mediator relaxes this
truthtelling constraint in two ways: First, with some probability 1−λ the mediator sends
message h regardless of i’s message. Second, the effect of the mediator sending message
h is less problematic for player i as it leads to a belief µhji below p. (Note that the belief
µlji, however is kept at 1 − p and therefore as low as possible in order to make sending
the low message after a high signal as unattractive as possible for player i.) However,
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the mediator cannot arbitrarily lower µhji: As the signal structure has to be consistent
with Bayes’ rule, the lowest possible belief µhji is the prior 1/2. If b is so high that i is
not truthtelling for µlji = 1 − p and µhji = 1/2, then the mediator cannot improve the
outcome. While this result was shown through an example, it should be clear that this
holds more general. The bounds µhji ≥ 1/2 and µlji ≥ 1− p imply through equation 13 in
the main text (proof of lemma 1) that truthtelling is impossible (unless µhji = µlji which
is equivalent to babbling) after a high signal if

bi <
1/2 + 1− p

2
+
∑

j∈Ri, j 6=i bj

nRi
− 1

− p

and similarly the bounds µhji ≤ p and µlji ≤ 1/2 imply that truthtelling is impossible after
a low signal if

bi >
1/2 + p

2
+
∑

j∈Ri, j 6=i bj

nRi
− 1

− (1− p).

This result can be extended to the case where one mediator receives signals by all
players and the publicly announces a forecast: For bi−

(∑
j∈Ri, j 6=i bj

)
/(nRi

−1) sufficiently
high, the term in brackets in 13 in the main text (proof of lemma 1) will be strictly
positive for all feasible values of µhji and µlji and therefore truthtelling after a low signal is
infeasible unless i’s message does not affect the mediator’s forecast. Similarly, truthtelling
is impossible if bi −

(∑
j∈Ri, j 6=i bj

)
/(nRi

− 1) is too low, i.e. too negative, as truthtelling
after a high signal is impossible.

As bi −
(∑

j∈Ri, j 6=i bj

)
/(nRi

− 1) scales in η if the set of biases is Bη, theorem 3 and
proposition 2 in the paper still hold if we consider mediated talk.
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