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In this supplementary material, which is not meant to be published, we provide some proofs

that were omitted from our paper “Facilitating Consumer Learning in Insurance Markets—

What Are the Welfare Effects?”. We also investigate the robustness of the results in our paper

with respect to the assumption that the information acquisition cost enters the agent’s payoff

additively.

Section 1 proves Proposition 1 and the claim in the end of Section 3.2 of our paper

that πNI > πSZ
max. Section 2 derives equation (12) in the paper. In Section 3 we study an

alternative setup in which the information acquisition cost enters the argument of the agent’s

utility function. Assuming CARA preferences, we show that the results of that model are

similar to the results in the paper.

1. Proof of Propositions 1 and the claim that πNI > πSZ
max

We first restate and prove Proposition 1 from the paper (note that this version of the propo-

sition contains a couple of additional results).

Proposition 1 (The Stiglitz model). Consider the Stiglitz model and suppose that P

optimally interacts with both agent types. Then, at the optimum, the high-risk type is

fully insured (uSZ
A = uSZ

N ≡ uSZ) and the low-risk type is underinsured ( uSZ
A < uSZ

N ).

The ex post utility levels at the optimum ( uSZ
A , uSZ

N , and uSZ) are implicitly defined by

the two binding constraints (IR-low and IC-high) and by the equality

υθ (1 − θ)
[
h′ (uSZ

N

)
− h′ (uSZ

A

)]
= (1 − υ)

(
θ − θ

)
h′ (uSZ

)
. (1)

Moreover, we have the following relationships between the utility levels:

uSZ
A < uSZ < U∗ < uSZ

N , (2)
∗Department of Economics, University of Copenhagen.
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(1 − θ) uSZ
N + θuSZ

A = U∗ and U
∗

< uSZ . (3)

Proof. By Lemma A1 in the paper (Appendix A), we know that IR-high is implied by

other constraints. We will also guess that IC-low is not binding at the optimum (and verify

that later). The Lagrangian to P ’s problem can be written as

L = ŵ − υ [(1 − θ) h (uN ) + θh (uA)] − (1 − υ)
[(

1 − θ
)
h (uN ) + θh (uA)

]

+λ [(1 − θ) uN + θuA − U∗] + μ
[(

1 − θ
)
uN + θuA −

(
1 − θ

)
uN − θuA

]
,

where λ is the shadow price associated with IR-low and μ is the shadow price associated with

IC-high.

The first-order condition with respect to uN is

∂L
∂uN

= 0 ⇔ (1 − υ) h′ (uN ) = μ. (4)

This implies that μ > 0; that is, IC-high binds at the optimum. The first-order condition

with respect to uN is

∂L
∂uN

= 0 ⇔ υ (1 − θ) h′ (uN ) = λ (1 − θ) − μ
(
1 − θ

)
. (5)

This implies that λ > 0; that is, also IR-low binds at the optimum.

The first-order conditions with respect to uA and uA are

∂L
∂uA

= 0 ⇔ (1 − υ) h′ (uA) = μ, (6)

∂L
∂uA

= 0 ⇔ υθh′ (uA) = λθ − μθ. (7)

Combining (4) and (6), using the fact that h′′ > 0, immediately yields uN = uA ≡ u. That

is, the high-risk type is fully insured. Next, multiply (5) by θ and multiply (7) by (1 − θ):

υθ (1 − θ) h′ (uN ) = λθ (1 − θ) − μθ
(
1 − θ

)
,

υθ (1 − θ) h′ (uA) = λθ (1 − θ) − μθ (1 − θ) .

Subtracting the latter from the former and then simplifying, we obtain

υθ (1 − θ)
[
h′ (uN ) − h′ (uA)

]
= μ

(
θ − θ

)
. (8)

Since υθ (1 − θ) > 0, θ > θ, μ > 0, and h′′ > 0, the above inequality implies that uN > uA.

Hence the low type is underinsured at the optimum. Equation (1) in Proposition 1 is obtained

by combining (8) and (4).

Given the analysis above, there are three things that we need to do in order to complete

the proof of Proposition 1: (i) verify that IC-low is satisfied at the optimum, (ii) show that

the inequalities in (2) hold, and (iii) show the relationships in (3). To show (i) note that,

given that IR-low binds and that uSZ
A = uSZ

N ≡ uSZ , IC-low simplifies to U∗ ≥ uSZ . But
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this inequality holds if (ii) holds, which we show next. We have already demonstrated that

uSZ
A < uSZ

N . The binding IR-low constraint, (1 − θ) uSZ
N + θuSZ

A = U∗, then implies that

uSZ
A < U∗ < uSZ

N . Next, the binding IC-high constraint, uSZ =
(
1 − θ

)
uSZ

N + θuSZ
A , implies

that uSZ
A < uSZ < uSZ

N . It now only remains to show that uSZ < U∗. Using the two binding

constraints we get

U∗ − uSZ =
[
(1 − θ) uSZ

N + θuSZ
A

]
−
[(

1 − θ
)
uSZ

N + θuSZ
A

]

=
(
θ − θ

) (
uSZ

N − uSZ
A

)
,

which we know is strictly positive. Finally consider (iii). The first relationship in (3) follows

from the binding IR-low. From IR-high, which we know is satisfied with a strict inequality,

we also obtain the second relationship in (3), uSZ > U
∗
.

Next we will restate and prove the claim that πNI > πSZ
max. For easy reference, we first

restate some equations from the paper:

πSZ
SD = (1 − υ)

[
w − θd − h

(
U

∗
)]

, (9)

πSZ = ŵ − υ
[
(1 − θ) h

(
uSZ

N

)
+ θh

(
uSZ

A

)]
− (1 − υ) h

(
uSZ

)
, (10)

EUNI = υU∗ + (1 − υ) U
∗
, (11)

πNI = ŵ − h
(
EUNI

)
. (12)

We are now ready to prove that πNI > πSZ
max.

Proof that πNI > πSZ
max. We can write

πNI = ŵ − h
(
EUNI

)

= ŵ − h
[
(1 − υ) U

∗
+ υU∗

]

> ŵ − (1 − υ) h
(
U

∗
)
− υh (U∗) ≡ πFI

≥ ŵ − (1 − υ) h
(
uSZ

)
− υh

[
(1 − θ) uSZ

N + θuSZ
A

]

> ŵ − (1 − υ) h
(
uSZ

)
− υ (1 − θ) h

(
uSZ

N

)
− υθh

(
uSZ

A

)

= πSZ ,

where the first equality uses (12), the second uses (11), the two strict inequalities use the

strict convexity of h (∙), the weak inequality uses the two IR constraints, and the last equality

uses (10). We have thus shown that πNI > πFI > πSZ . To complete the proof it thus suffices

to show that, in addition, πFI > πSZ
SD (which implies πNI > πSZ

SD). By using (9), the definition

of πFI on the third line above, and the equality ŵ = w −
[
(1 − υ) θ + υθ

]
d, we can write

πFI > πSZ
SD ⇔

w −
[
(1 − υ) θ + υθ

]
d − (1 − υ) h

(
U

∗
)
− υh (U∗) > (1 − υ)

[
w − θd − h

(
U

∗
)]

⇔

υw − υθd − υh (U∗) > 0 ⇔ w − θd > h (U∗) ⇔

u (w − θd) > U∗ = (1 − θ) u (w) + θu (w − d) ,

which always holds due to the strict concavity of u.
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2. Deriving equation (12)

We here derive equation (12), which gave us the coordinates of the crossing point C:

(uA, uN ) = (u (w − d) + (1 − θe)k, u (w) − θek) . (13)

Proof. Calculate the crossing point between ϕhigh and ϕante:

υU∗ − c

υ (1 − θ)
−

θ

1 − θ
uA =

υU∗ + (1 − υ) U
∗

υ (1 − θ) + (1 − υ)
(
1 − θ

) −
υθ + (1 − υ) θ

υ (1 − θ) + (1 − υ)
(
1 − θ

)uA ⇔

υθ + (1 − υ) θ

υ (1 − θ) + (1 − υ)
(
1 − θ

)uA −
θ

1 − θ
uA =

υU∗ + (1 − υ) U
∗

υ (1 − θ) + (1 − υ)
(
1 − θ

) −
υU∗ − c

υ (1 − θ)
⇔

(1 − θ)
[
υθ + (1 − υ) θ

]
− θ

[
υ (1 − θ) + (1 − υ)

(
1 − θ

)]

[
υ (1 − θ) + (1 − υ)

(
1 − θ

)]
(1 − θ)

uA

=
(1 − θ)

[
υU∗ + (1 − υ) U

∗
]
−
[
υ (1 − θ) + (1 − υ)

(
1 − θ

)]
U∗

[
υ (1 − θ) + (1 − υ)

(
1 − θ

)]
(1 − θ)

+
c

υ (1 − θ)
⇔

(1 − υ)
[
(1 − θ) θ − θ

(
1 − θ

)]

[
υ (1 − θ) + (1 − υ)

(
1 − θ

)] uA =
(1 − υ)

[
(1 − θ) U

∗
−
(
1 − θ

)
U∗
]

[
υ (1 − θ) + (1 − υ)

(
1 − θ

)] +
c

υ
⇔

uA =
(1 − θ) U

∗
−
(
1 − θ

)
U∗

θ − θ
+

[
υ (1 − θ) + (1 − υ)

(
1 − θ

)]
c

υ (1 − υ) (θ − θ)
⇔

uA = u (w − d) +

[
υ (1 − θ) + (1 − υ)

(
1 − θ

)]
c

υ (1 − υ) (θ − θ)
. (14)

In order to obtain the value of uN at the crossing point, we plug (2) into the equation for

ϕhigh and simplify:

uN =
υU∗ − c

υ (1 − θ)
−

θ

1 − θ
uA

=
υU∗ − c

υ (1 − θ)
−

θ

1 − θ

[
(1 − θ) U

∗
−
(
1 − θ

)
U∗

θ − θ
+

[
υ (1 − θ) + (1 − υ)

(
1 − θ

)]
c

υ (1 − υ) (θ − θ)

]

=
U∗

(1 − θ)
−

θ
[
(1 − θ) U

∗
−
(
1 − θ

)
U∗
]

(
θ − θ

)
(1 − θ)

−
θ
[
υ (1 − θ) + (1 − υ)

(
1 − θ

)]
c

υ (1 − υ) (1 − θ) (θ − θ)
−

c

υ (1 − θ)

=

[
θ − θ + θ

(
1 − θ

)]
U∗ − θ (1 − θ) U

∗

(
θ − θ

)
(1 − θ)

−

[
υθ (1 − θ) + (1 − υ) θ

(
1 − θ

)
+ (1 − υ) (θ − θ)

]
c

υ (1 − υ) (1 − θ) (θ − θ)

=
θ (1 − θ) U∗ − θ (1 − θ) U

∗

(
θ − θ

)
(1 − θ)

−

[
υθ (1 − θ) + (1 − υ) θ

(
1 − θ

)
+ (1 − υ) (θ − θ)

]
c

υ (1 − υ) (1 − θ) (θ − θ)

=
θU∗ − θU

∗

θ − θ
−

υθ (1 − θ) + (1 − υ)θ(1 − θ)

υ (1 − υ) (1 − θ) (θ − θ)
c ⇔

uN = u (w) −
υθ + (1 − υ)θ

υ (1 − υ) (θ − θ)
c.
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3. Monetary costs of information gathering

In this section, we look at an alternative setup where the cost of effort does not enter the

utility function additively. Instead the effort cost c is monetary, and it is therefore subtracted

from the agent’s wealth (in the argument of the utility function). We will focus on the case

of CARA preferences; that is, given a consumption level y, the agent’s utility is

u(y) = −e−ηy,

where η > 0 is a parameter. Hence, the expected utility of an agent gathering information,

finding out his type is θ̄ and buying the insurance contract (ā, p̄), is1

−θ̄e−η(w−p̄−d+ā−c) − (1 − θ̄)e−η(w−p̄−c).

We still use the utility notation of the paper but amend it in the following way: For example,

ūA(1) is the utility when acquiring information, buying the “upperbar contract” and having

an accident; i.e. ūA(1) = −e−η(w−p̄−d+ā−c). In contrast, ūA(0) is the utility when buying

the “upperbar contract” and having an accident without acquiring information; i.e. ūA(0) =

−e−η(w−p̄−d+ā). The other utility levels are defined similarly.

Similarly to the structure of the paper, we first analyze the case where the principal wants

to induce information gathering and then the case where he does not. We will show that in

this setup the same constraints as in the setup of the paper are binding. This will imply that,

qualitatively, also the same distortions as in the paper occur.

3.1. Inducing information gathering

Lemma S1 IG-low implies IC-high.

Proof. IG-low is written as

v[(1 − θ)uN (1) + θuA(1)] + (1 − v)[(1 − θ̄)ūN (1) + θ̄ūA(1)]

≥ v[(1 − θ)uN (0) + θuA(0)] + (1 − v)[(1 − θ̄)uN (0) + θ̄uA(0)].

This implies

v[(1 − θ)uN (1) + θuA(1)] + (1 − v)[(1 − θ̄)ūN (1) + θ̄ūA(1)]

> v[(1 − θ)uN (0) + θuA(0)] + (1 − v)[(1 − θ̄)uN (1) + θ̄uA(1)],

because uN (1) < uN (0) and uA(1) < uA(0). This in turn implies

(1 − θ̄)(ūN (1) − uN (1)) + θ̄(ūA(1) − uA(1))

>
v

1 − v
((1 − θ)(uN (0) − uN (1)) + θ(uA(0) − uA(1))) > 0,

which verifies IC-high.
1In contrast to the paper, for convenience we here let a denote the gross (not the net) indemnity.
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Lemma S2 IR-ante is implied by IR-low and IG-low.

Proof. IR-low is given by

θ
(
u(w − p − d + a − c) − u(w − d − c)

)
+ (1 − θ)

(
u(w − p − c) − u(w − c)

)
≥ 0.

Given that p ≥ 0 and a ≥ p, this implies

θ̄
(
u(w − p − d + a − c) − u(w − d − c)

)
+ (1 − θ̄)

(
u(w − p − c) − u(w − c)

)
≥ 0,

which using our ususal notation can be written as

θ̄uA(1) + (1 − θ̄)uN (1) ≥ U
∗
(1).

With CARA preferences, this is equivalent to

θ̄uA(0) + (1 − θ̄)uN (0) ≥ U
∗
(0). (15)

Also IR-low can, due to the CARA assumption, be restated as

(1 − θ)uN (0) + θuA(0) ≥ U∗(0). (16)

Now use (15) and (16) in IG-low:

v[(1 − θ)uN (1) + θuA(1)] + (1 − v)[(1 − θ̄)ūN (1) + θ̄ūA(1)]

≥ v[(1 − θ)uN (0) + θuA(0)] + (1 − v)[(1 − θ̄)uN (0) + θ̄uA(0)]

≥ vU∗(0) + (1 − v)U
∗
(0),

which is IR-ante.

Lemma S3 If information acquisition is optimal, IG-high is lax and IR-low and IG-low are

binding.

Proof. Suppose, per contra, that IG-high is binding and that information acquisition is

optimal. We will show that then there exists a contract that yields higher profits and does not

induce information acquisition, which contradicts the optimality of information acquisition.

The proof goes through two subcases.

First, assume ā ≤ d, which means that the high coverage contract has at most full coverage.

We claim that it is more profitable in this case to offer only the high coverage contract (p̄, ā).

As IG-high is binding by assumption, the consumer can achieve the same ex ante utility

as before by buying the contract without gathering information. Since the fact that the

low-coverage contract is not offered restricts the consumer’s choice set, her ex ante utility

cannot be higher than in the situation in which she could choose either contract. This implies

that the consumer’s optimal strategy when offered only (p̄, ā) is to buy this contract without

information acquisition. It remains to show that the insurer’s profits are higher than in
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the situation where he offers two contracts. This is intuitively obvious as (i) the consumer

surplus is the same in both situations but (ii) the information acquisition cost is saved and

(iii) (some) consumers have more coverage. Welfare (in the sense “total amount of resources”)

must increase because of (ii) and (iii) but the consumer surplus remains the same. Hence,

profits must increase.

Second, assume ā > d, which is equivalent to ūA > ūN . Then the insurer can offer a full

coverage, pooling contract that gives the agent the same ex ante utility as before (but now

without incurring the cost of information acquisition). This yields, we claim, a higher profit

for the insurer. Call the utility level of this contract up(0). Then the consumer does not want

to deviate by exerting effort and buying insurance only in case she is a high-risk type: As

IG-high is binding, up(0) =
(
vθ + (1 − v)θ̄

)
ūA(0) +

(
v(1 − θ) + (1 − v)(1 − θ̄)

)
ūN (0). This

implies up(0) < θ̄ūA(0) + (1 − θ̄)ūN (0), because of ūA(0) > ūN (0) and θ̄ > θ. By CARA,

we then have up(1) < θ̄ūA(1) + (1 − θ̄)ūN (1). This implies that the deviation “acquiring

information and buying (high) coverage if type θ̄ while remaining uninsured if type θ” gives a

lower payoff under the pooling contract than under the original menu. As the expected utility

when not deviating is by definition of up(0) the same, the deviation is not profitable in the

pooling situation.

It remains to show that profits are higher under the pooling contract:

πpooling = ŵ − h(up(0))

= ŵ − h
(
vθuA(1) + v(1 − θ)uN (1) + (1 − v)θ̄ūA(1) + (1 − v)(1 − θ̄)ūN (1)

)

> ŵ − c − vθh(uA(1)) − v(1 − θ)h(uN (1)) − (1 − v)θ̄h(ūA(1)) − (1 − v)(1 − θ̄)h(ūN (1))

= πoriginal separating ,

where the strict inequality follows from the strict convexity of h.

This proves that IG-high is lax. As in a standard problem also IR-high and IC-low are lax

(we omit the formal proof of this as the result should be unsurprising). Hence, only IR-low

and IG-low can be binding. If IR-low was lax, increasing p would clearly increase profits and

relax the only potentially binding contraint IG-low. Hence, IR-low must bind. If IG-low was

lax, increasing p̄ would increase profits while not affecting the only binding constraint IR-low.

Hence, IG-low must bind.

The following proposition states that the low-risk type is underinsured and the high-risk

type is fully insured if the principal finds it optimal to induce information acquisition.

Proposition S1 If it is optimal for the principal to induce information acquisition, then

ūA(1) = ūN (1) and uA(1) < uN (1).

Proof. Note that due to the CARA assumption, ūi(0)eηc = ūi(1) for i = N,A and similarly
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for ui. Given the constraints IR-low and IG-low, the Lagrangian of the principal’s problem is

L = ŵ − c − υ [(1 − θ) h (uN (1)) + θh (uA(1))] − (1 − υ)
[(

1 − θ
)
h (uN (1)) + θh (uA(1))

]

+λ [(1 − θ) uN (1) + θuA(1) − U∗(1)]

+μ
{
(1 − υ)

[(
1 − θ

) (
uN (1) − uN (1)e−ηc

)
+ θ

(
uA(1) − uA(1)e−ηc

)]

+υ
[
(1 − θ)uN (1)(1 − e−ηc) + θuA(1)(1 − e−ηc)

]}
. (17)

The first-order conditions with respect to uA(1) and uN (1) are

∂L
∂uA(1)

= 0 ⇔ υθh′(uA(1)) = λθ + μ
[
υθ(1 − e−ηc) − (1 − υ)θ̄e−ηc

]
(18)

∂L
∂uN (1)

= 0 ⇔ υ(1 − θ)h′(uN (1))

= λ(1 − θ) + μ
[
υ(1 − θ)(1 − e−ηc) − (1 − υ)(1 − θ̄)e−ηc

]
. (19)

Multiplying (18) by (1 − θ) and (19) by θ and subtracting the latter resulting equation from

the former yields

υθ(1 − θ)
(
h′(uA(1)) − h′(uN (1))

)
= −μ(1 − υ)e−ηc(θ̄ − θ),

which implies uA < uN by the strict convexity of h and μ > 0 by the previous lemma.

The first-order condition with respect to ūN (1) and ūA(1) are

∂L
∂ūN (1)

= 0 ⇔ (1 − υ)(1 − θ̄)h′(ūN (1)) = μ(1 − υ)(1 − θ̄), (20)

∂L
∂ūA(1)

= 0 ⇔ (1 − υ)θ̄h′(ūA(1)) = μ (1 − υ) θ̄. (21)

Combining equations (20) and (21) yields h′(ūN (1)) = μ = h′(ūA(1)), which implies ūA(1) =

ūN (1) by the strict convexity of h.

Lemma S4 If it is optimal for the principal to induce information acquisition, then ∂π∗
x=1
∂c <

0. Furthermore, limc→0 π∗
x=1 = πSB

max.

Proof. The first claim follows from the envelope theorem used on the Lagrangian (17). Note

that the objective and IR-low are not affected by changes in c. However, IG-low is harder to

satisfy for higher values of c.

To verify the second claim, note that for c → 0 IG-low continuously becomes identical to

IC-high. IR-low and the objective of the principal are not affected by changes in c. Hence,

the maximization problem becomes identical to the Stiglitz problem as c → 0.

3.2. Not inducing information gathering

Assuming CARA preferences and letting our u notation here denote the utility levels given

x = 0, the principal’s problem is to maximize

ŵ −
[
υ(1 − θ) + (1 − υ)(1 − θ̄)

]
h(uN ) −

[
υθ + (1 − υ)θ̄

]
h(uA)
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subject to

υ(1 − θ)uN + (1 − υ)(1 − θ̄)uN (1 − eηc) + υθuA + (1 − υ)θ̄uA(1 − eηc) − υeηcU∗ ≥ 0,

(IG-high)

υ(1 − θ)uN + (1 − υ)(1 − θ̄)uN + υθuA + (1 − υ)θ̄uA − υU∗ − (1 − υ)U
∗
≥ 0.

(IR-ante)

The objective function is strictly concave and the domain is convex and compact as the

constraints are weak inequalities that are linear in utilities. Consequently, the maximization

problem has a unique solution. Furthermore, both constraints and objective are continuous

in c and continuous in the utilities. Hence, the optimal contract will be continuous in c as

well.

Note that utilities are negative with CARA preferences. Hence, it is obvious that IG-high

is lax for c → ∞. It is also clear that at least one of the constraints must bind (otherwise

increasing the premium results in higher profits). For c high enough, IR-ante will, therefore,

bind and IG-high will be lax.

Denoting the Lagrange multiplier of the IG-high constraint by μ and the Lagrange mul-

tiplier of the IR-ante constraint by λ, the first-order conditions of the maximization problem

are

(1 − A)h′(uN ) = μ
(
1 − A − (1 − υ)(1 − θ̄)eηc

)
+ λ(1 − A), (22)

Ah′(uA) = μ
(
A − (1 − υ)θ̄eηc

)
+ λA, (23)

where A is defined as A ≡ υθ + (1 − υ)θ̄.2 Note that 0 < θ < A < θ̄ < 1. Adding (22) and

(23) yields

(1 − A)h′(uN ) + Ah′(uA) = μ (1 − (1 − υ)eηc) + λ.

Solving this equation for λ and plugging it back into (23) gives

[h′(uN ) − h′(uA)]A(1 − A) = μ(1 − υ)(θ̄ − A)eηc. (24)

This leads to the following result:

Proposition S2 Suppose that information gathering is not induced. Then the optimal con-

tract provides full coverage if IG-high is slack and partial coverage if IG-high binds.

For c → 0, IG-high must bind. To see this, we can rewrite the constraints as uN ≥

ϕIGh(uA) and uN ≥ ϕante(uA), where both ϕ functions are linear.3 For c = 0, it is easy to

2Note that in our paper we use the notation θe for A. We avoid that notation here since in this model the

notation e represents the exponential function.
3Alternatively, instead of going through the arguments in the next few sentences, we could note that for

c = 0 the two constraints coincide with those in our paper (see in particular Figure 1 there and the discussion

in connection to that figure). Therefore, for that case, the result that IG-high binds follows from the analysis

in the paper. However, we will later in this supplementary material make use of the notation ϕIGh(uA) and

ϕante(uA), which is why we restate the arguments here.
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see that ϕante has a higher slope and intercept than ϕIGh. Furthermore, the two ϕ functions

intersect at a point where uN > uA, i.e. above the 45-degree line. If IG-high did not bind, only

IR-ante was binding and therefore uA = uN . Given that the intersection of the ϕ functions

is above the 45-degree line, this would imply that IG-high is violated. This is impossible. As

IG-high is continuous in c and IR-ante is not affected by c, the same must hold for c > 0 small

enough.

Furthermore, it is clear from the derivation above that the continuity of the optimal

contract in c implies that the Lagrange parameter λ and μ are also continuous in c. This is

an important observation because it implies that there must be a range of c values for which

both constraints are binding: If this was not the case, there would have to be a cutoff c̃ such

that only IR-ante binds for c > c̃ and only IG-high binds for c < c̃. The continuity of λ and

μ would then imply that λ(c̃) = μ(c̃) = 0, which means that no constraint binds if c = c̃.

Clearly, this is impossible.

3.2.1. Both constraints binding

Now we want to turn to the case where indeed both constraints are binding. The two con-

straints can then be solved for the utility levels uN and uA. Subtracting IG-high from IR-ante

and rearranging gives

uA =
1

θ̄(1 − υ)

(
(1 − υ)U

∗
e−ηc + υU∗ (e−ηc − 1

))
−

1 − θ̄

θ̄
uN .

Plugging this back into IR-ante yields after rearranging

υ
θ̄ − θ

θ̄
uN = υU∗ + (1 − υ)U

∗
−

υθ + (1 − υ)θ̄
θ̄(1 − υ)

(
(1 − υ)U

∗
e−ηc + υU∗ (e−ηc − 1

))
.

The last two equations imply the following result (recall that all utilities are negative because

of the CARA preferences):

Lemma S5 If IG-high and IR-ante bind, then ∂uN
∂c < 0 and ∂uA

∂c > 0.

Lemma S5 implies together with (24) that ∂μ
∂c < 0 whenever both constraints are binding.

This and equation (23) yield then ∂λ
∂c > 0 whenever both constraints are binding.

3.2.2. Only IG-high binds

In this case, λ = 0. Eliminating μ from (22) and (23) gives

A

A − (1 − υ)θ̄eηc
h′(uA) =

1 − A

1 − A − (1 − υ)(1 − θ̄)eηc
h′(uN ).

With CARA preferences h′(u) = −1/(ηu) and therefore the previous equation can be rewritten

as

uN =
(1 − A)(A − (1 − υ)θ̄eηc)

A(1 − A − (1 − υ)(1 − θ̄)eηc)
uA. (25)
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Note that from IG-high we know that

uA = −
1 − A − (1 − υ)(1 − θ̄)eηc

A − (1 − υ)θ̄eηc
uN +

υeηc

A − (1 − υ)θ̄eηc
U∗. (26)

Plugging (25) into (26) yields

uA =
Aυeηc

A − (1 − υ)θ̄eηc
U∗,

which implies ∂uA
∂c < 0 (recall again that U∗ < 0). Solving (25) and (26) for uN yields

uN =
(1 − A)υeηc

1 − A − (1 − υ)(1 − θ̄)eηc
U∗,

which implies ∂uN
∂c < 0. This leads to the following result:

Lemma S6 The expected utility of the agent is

• strictly decreasing in c if only IG-high binds and

• constant in c if IR-ante binds.

Proof. The first statement follows from the comparative statics results ∂uN
∂c < 0 and ∂uA

∂c < 0,

which were just derived for the case where only IG-high binds. The second statement follows

from the fact that ex ante consumer surplus is υU∗ +(1−υ)U
∗

if IR-ante binds and this term

is constant in c.

3.2.3. Comparative statics with respect to c

Whether IR-ante is binding for small values of c depends on the shape of the utility function:

The slope of an isoprofit curve is

duN

duA

∣
∣
∣
∣
πx=0=const

=
−Ah′(uA)

(1 − A)h′(uN )
.

The slope of ϕIGh (for c = 0) is −θ/(1 − θ). Let (u′
N , u′

A) be the point on ϕIGh such that
−Ah′(u′

A)

(1−A)h′(u′
N )

= − θ
(1−θ) ; that is, (u′

N , u′
A) is the tangency point of an isoprofit line with ϕIGh.

If u′
N > ϕante(u′

A), then IR-ante is slack for c > 0 small enough. If u′
N ≤ ϕante(u′

A), then

IR-ante will bind for all values of c. The reason behind the last two statements is very simple:

If IR-ante does not bind, then (u′
N , u′

A) is the optimal contract for c = 0. IR-ante does not

bind at (u′
N , u′

A) only if u′
N > ϕante(u′

A). Note that IG-high changes continuously in c and

therefore the same conclusion holds for c > 0 small enough.

Lemma S7 If u′
N > ϕante(u′

A), then there exist a c′ and a c′′ > c′ such that

• only IG-high is binding if c < c′,

• IG-high and IR-ante are binding if c ∈ (c′, c′′) and

• only IR-ante is binding if c > c′′.
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If u′
N ≤ ϕante(u′

A), then there exists a c′′ > 0 such that

• IG-high and IR-ante are binding if c ∈ (0, c′′) and

• only IR-ante is binding if c > c′′.

Proof. We already established that for c sufficiently small only IG-high is binding if

u′
N > ϕante(u′

A). Since λ and μ are continuous in c and cannot both be zero for any c, it

follows that there is a c′ such that (i) λ(c) = 0 for all c < c′, (ii) λ(c) > 0 for c ∈ (c′, c′ + ε) for

some ε > 0 and (iii) μ(c′) > 0. For c slightly above c′, both constraints bind and therefore λ is

increasing in c and μ is decreasing in c. Let c′′ be the lowest value of c where μ(c) = 0. Note

that μ is zero for all c > c′′: Suppose otherwise and define ĉ = inf{c : μ(c) > 0 and c > c′′}.

By the continuity of μ, μ(ĉ) = 0 which implies that λ(ĉ) > 0 as at least one constraint must

bind. By the continuity of λ, λ(c) > 0 for c ∈ (ĉ, ĉ + ε) for some ε > 0. But this implies

that μ cannot increase on (ĉ, ĉ + ε) and therefore μ(c) = 0 on (ĉ, ĉ + ε). This contradicts the

definition of ĉ.

The second statement is proven in the same way.

The effect of a change of c on the profits π can be obtained from the envelope theorem:

∂π∗
x=0

∂c
= −μη(1 − υ)((1 − θ̄)uN + θ̄uA)eηc ≥ 0.

Hence, profits (conditional on not inducing information gathering) are strictly increasing in c

if IG-high binds and constant in c otherwise. This together with Lemma S6 gives the following

result.

Proposition S3 Assume no information gathering is induced. If u′
N > ϕante(u′

A), then

• for c ∈ (0, c′), expected utility of the agent is strictly decreasing in c and expected

profits are strictly increasing in c;

• for c ∈ (c′, c′′), expected utility is constant in c and expected profits are strictly

increasing in c;

• for c > c′′, expected utility and profits are constant in c.

If u′
N ≤ ϕante(u′

A), then

• for c ∈ (0, c′′), expected utility is constant in c and expected profits are strictly

increasing in c;

• for c > c′′, expected utility and profits are constant in c.

3.3. Combining the cases

We have shown that profits from inducing information acquisition are the profits of the Stiglitz

model for c = 0. In the Stiglitz model, separation is always superior to pooling which implies

that profits from information acquisition are higher than profits from not inducing information
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acquisition for c = 0. Profits are decreasing in c if the agent is induced to gather information

while profits are increasing in c if the agent is induced not to gather information. For c → ∞,

obviously inducing no information acquisition leads to higher profits than inducing information

acquisition. This implies that there must be a cost level c∗ > 0 such that inducing information

gathering is optimal for c < c∗ and not inducing information gathering is optimal for c > c∗.

Note that c∗ < c′′ because profits are maximal for c ≥ c′′ (full insurance, no information

gathering and the agent’s individual rationality constraint is binding); that is, profits from

not inducing information gathering are higher than the Stiglitz profits which are the highest

profits achievable when inducing information gathering.

For c slightly below c′′, profits are increasing in c and expected utility is constant in c

(Proposition S3).4 This implies that, for such values of c, a marginal reduction in c lowers

welfare and leads to a Pareto inferior outcome.

4To be more precise: This holds for c ∈ (max{c∗, c′}, c′′) if u′
N > ϕante(u

′
A) and for c ∈ (c∗, c′′) if u′

N ≤

ϕante(u
′
A).
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