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1. Introduction

Regime change games describe situations in which a group of individuals must work together

to overcome a common opponent. Examples include speculative attacks, bank runs, revolu-

tions or prison riots. For the theorist, such games pose two puzzles: First, predictions are

often not clear-cut, as the attackers’ actions are strategic complements and hence there are

multiple, extreme Nash equilibria (in which everybody attacks or nobody does). Second,

any result will crucially depend on the relative strength of the opponent compared to the

combined strength of the attackers – yet what determines this strength? A common mod-

eling approach has been to answer both questions in one, by assuming that the opponent’s

strength is a “state of nature” which individuals learn imperfectly – see, for example, the

“global games” approach which refines the set of equilibria and yields a unique prediction.1

Yet in many of the situations which regime change games model, the defense strength is

the conscious choice of an active defender. A central bank could build up currency reserves in

anticipation of having to counter a speculative attack, a company may raise capital to deter

a take-over, and prison wardens or dictators can invest in security forces.

In this paper, we consider a regime change game in which there is an active defender who

can invest in costly defenses. In particular, we consider a model in which the defender can

make his choice in secret, as this maximizes the importance of his agency.2 We show that

introducing this assumption leads to drastically different predictions from canonical models:

If the number of potential attackers is large enough, there exists a unique Nash equilibrium

in which the defender chooses to make almost no investment in defenses, yet attacks almost

never occur.

We think that this result is interesting for three reasons. First, it shows that regime

change models yield unique Nash equilibrium predictions if we consider a rich enough player

set, without the need for any refinement methods. Second, our main result contains a discon-

tinuity: It only applies for a large enough number of potential attackers – intuitively, their

coordination problem has to be severe enough for our result to hold. Indeed, it could be

argued that the “coordination problem” in this context is slightly different from how the term

is generally understood: it is not so much the problem of trying to predict what is in others’

minds, but of trying to be collectively unpredictable – a related, but not identical problem.

Third, it shows how the law of large numbers can be used to examine the existence of mixed

Nash equilibria: In our main proof, we will make use of the fact that the aggregate behavior

1Cf Rubinstein (1989) and Carlsson and van Damme (1993) for ground-breaking work on global games,
Morris and Shin (1998) and Goldstein and Pauzner (2005) for applications to speculative attacks and bank
runs respectively, and Morris and Shin (2003) for an early survey.

2If his choice were observable to the attackers, we would be back to models in which the higher-order
beliefs of players determine equilibrium selection – we compare our results to such models in the appendix.
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of a group of players in a mixed equilibrium will become relatively more predictable as the

size of the group increases.

In the remainder of this introduction, we will describe our main result in more detail and

give an intuitive explanation for it. Within the main text of the paper we describe our model

and explain the proof technique in sections 2 and 3; the full proof is in appendix A. We also

show that the result is quite robust to a number of modifications and extensions (section

4.2) and relate it to an intriguing idea by Jeremy Bentham and the literature that followed

it (section 4.3).

An Intuitive Explanation of Our Result

Regime change games have been applied to many situations. To fix ideas, we will use the

metaphor of a prison: Imagine that a prison warden chooses how many guards he wants to

hire; guards are costly. Afterwards a number of prisoners decide whether to revolt or not. If

the number of prisoners who revolt is higher than the number of guards, these prisoners win

and escape from the prison. Otherwise, the prisoners who revolted get punished. Prisoners

who do not revolt will neither escape nor be punished. We assume throughout that the

warden can make his choice in secret, so that the choices of the warden and the prisoners are

in effect simultaneous.

Our main result (Theorem 1) is that there is a unique Nash equilibrium in which the

warden hires almost no guards and prisoners almost never revolt. Despite the fact that there

is at most one guard (and sometimes none), a successful breakout almost never occurs. This

result arises only if the number of prisoners is sufficiently high; for low numbers of prisoners

there can be many more Nash equilibria.

How does the equilibrium uniqueness arise, and why does it only arise for large numbers

of prisoners? We begin by noting that the situation between the warden and the group

of prisoners is one of conflict: After the game has taken place and a successful breakout

has happened (or not), either the warden or at least one prisoner must always regret their

action.3 This is a feature which our model shares with more simple simultaneous-move games

of conflict such as matching pennies or rock-paper-scissors.

In such games, a player is weakened by being predictable: It is easy to win a game of

rock-paper-scissors against someone who always plays rock, and still possible to beat them

more than half the time if for example they are unable to play scissors more than 10% of the

time. In simple two-player games, players gain unpredictability by playing a mixed strategy

– indeed, that is the only equilibrium of rock-paper-scissors. In our model, the warden can be

as unpredictable as he likes by similarly randomizing between guard levels. Each prisoner can

3Note that we mean “action” in the sense that a player can play a mixed strategy which then picks an
action; he might regret the action without regretting the strategy.
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also be unpredictable by randomizing between revolting and not revolting. But, crucially, a

group of randomizing prisoners will always be more predictable in aggregate than any single

one of them. If, for example, 20 prisoners were to flip a coin to make their choice, the number

of attacking prisoners will be between 9 and 11 more than a third of the time. As the number

of prisoners grows, their unpredictability as a group falls. This means that, if there are

many prisoners, there cannot be any equilibria in which breakouts happen frequently, since

the warden would then know – more or less exactly – how many guards he would have to

hire to prevent them. Consequently, the only Nash Equilibrium that exists is one in which

prisoners almost never attack, the warden needs almost no guards, and successful attacks

almost never occur. To be sure: This equilibrium also exists in slightly different models, such

as can be found in the canonical literature on speculative attacks.4 But our result is that in

the situation we describe, this equilibrium is unique.

The coordination problem of the prisoners, in our model, is the inability of each prisoner

to make his action dependent on that of others, and in such a way becoming unpredictable as

a group. More specifically, in order to become successfully unpredictable the prisoners would

need a coordination device that would not be accessible to the warden. This is in contrast

to other models of regime change games, which have seen the coordination problem in the

inability of players to guess each other’s information.

We do not claim that our model “shows” that prison wardens or governments can deter

attacks with minimal (or no) defense strength. Instead, we think of our result as giving an

insight – at a high level of abstraction – into how systems and regimes can be stable even if

they look vulnerable to a coordinated attack.

Relation to Other Literature

Our model is directly related to the rich literature on regime change games and their applica-

tions to speculative attacks and bank runs. The problem of a central bank defending against

speculators has received much attention (e.g. Flood and Garber, 1984; Obstfeld, 1986). Such

models predict that the self-fulfilling nature of attacks leads to multiple equilibria. One of

these equilibria is similar to the one that emerges as unique Nash Equilibrium in our model.

The equilibrium multiplicity of such models has often been seen as unsatisfying, or at

least calling for an explanation of the attackers’ higher-order beliefs. Morris and Shin (1998),

building on results by Rubinstein (1989) and Carlsson and van Damme (1993), show how a

refinement that introduces minimal noise selects a unique equilibrium prediction, in which the

probability of an attack is monotonic in the strength of the defender. More recently, Weinstein

and Yildiz (2007) have shown that while equilibrium uniqueness is a robust feature of selection

4For example, in a textbook bank run model it is an equilibrium that no one runs on the bank. However,
there is another equilibrium in which everyone does.
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methods based on higher order perturbations, the identity of the selected equilibrium is not

robust and depends heavily on the chosen perturbation. Our paper adds an active defender

to the setup of Morris and Shin (1998) and shows that a unique Nash equilibrium (without

the need of any refinements) exists in this game if the number of attackers is sufficiently

large. Moreover this equilbrium has the surprising feature that successful attacks are very

rare although the defender uses only minimal ressources to defend.

Modified regime change games have also been analyzed with a focus on signaling and

information manipulation (Edmond, 2013), signaling through defensive measures (Angeletos

and Pavan, 2013), reputation (Huang, 2017) and the optimal stopping problem when under

attack (Kurlat, 2015). The main contrast between these papers and our analysis is that we

consider the defender as a strategic player. We consider a simple one-shot game, and we are

not concerned with the ability of the defender to distort information or signal.

In our main result, we make use of the fact that as the number of prisoners gets larger, their

overall behavior becomes relatively more predictable regardless of which strategy they each

play. In describing this increase in relative predictability, we show how to use concentration

inequalities to prove uniqueness of mixed equilibria; we will cite the relevant mathematical

results directly as we make use of them.

Two well-known classes of games are related to the model we consider in this paper.

The role of the active defender in our model is reminiscent of inspection games in which an

inspectee decides whether to choose a “legal” or an “illegal” action and an inspector decides

whether to inspect or not. The inspector prefers to inspect only if an illegal action is chosen

and the inspectee prefers the legal action only if inspected. The literature on such games is

surveyed in Avenhaus et al. (1996) and in Avenhaus et al. (2002). The main difference to

our setup is that inspection games typically investigate settings with a single inspectee. If

several inspectees are considered, e.g. in Deutsch et al. (2011), the payoff of each inspectee is

independent of the actions of the other, i.e. the strategic complementarity typical for regime

change games does not exist and coordination problems do not play a role.

Studies of the volunteer dilemma have considered the influence of group size on symmetric

mixed equilibria. A volunteer dilemma (Diekmann, 1985) is a situation in which exactly one

“volunteer” is needed to produce a costly public good. In symmetric mixed equilibria of such

a game, the probability that any single individual provides the public good decreases with

group size, as does the probability that the public good is provided at all. While this result

has some similarity to our result that revolt probability converges to zero for large groups of

prisoners, there is a crucial difference: Volunteer dilemmas have a large number of asymmetric

equilibria (for example one each in which one person volunteers). In our setting, strategic

complementarity among the prisoners eliminates all such equilibria, though (as we show in
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section 4.1) this assumption is not essential for all parts of our main result. The existence

of the “defender” in our model then eliminates the multiplicity of symmetric equilibria that

would otherwise arise in models with pure strategic complements.

Archetti (2009) studies optimal group size in a volunteer dilemma and concludes that

it is intermediate (as long as the number of required volunteers does not increase in group

size, larger groups allow for the spreading of costs but make coordination harder). In our

model, prisoner welfare does not depend on group size since each prisoner must be indifferent

between attacking and their safe option with fixed payoff (as in most regime change games).

2. Model

Players and Strategies We consider a game played between one warden and N prisoners.

The warden chooses a guard level γ ∈ R+. The prisoners decide simultaneously and indepen-

dently whether to revolt (r) or not revolt (n). All revolting prisoners break out if the number

of revolting prisoners is strictly larger than γ. Otherwise, no prisoner breaks out.

Payoffs Each prisoner values breaking out by b > 0. If the prisoner revolts but there is no

breakout, he bears a cost −q < 0. This cost can be interpreted in two ways: It could either

represent a punishment for prisoners who unsuccessfully try to escape or it could denote a

cost of effort (in the latter case b should be interpreted as the benefit of breaking out net of

this effort cost). If a prisoner does not revolt, his utility is 0; see table 1 for a summary of

these payoffs.

breaks out does not break out
r b −q
n 0 0

Table 1: A prisoner’s payoff conditional on breaking out or not

The warden experiences a disutility denoted by −B < 0 whenever a breakout occurs;

apart from that he only cares about the costs of the guards. The costs of the guards are

linear in γ with slope normalized to 1, i.e. guard costs are −γ. Consequently, the utility of

the warden is −B − γ if a breakout occurs and −γ otherwise. Each player maximizes his

expected utility. Finally, we make an assumption on the size of the disutility B:

Assumption 1. B ≥ N + 1.

The assumption implies that the warden would prevent a revolt (by setting γ = N) if he

knew that all prisoners play r for sure. We mainly make this assumption to make the game

interesting: If B < N , there is – independent of any information structure – a quite robust
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equilibrium in which the guard level is zero and all prisoners revolt. This is a somewhat

uninteresting case that we want to neglect. For concreteness, we will assume B ≥ N + 1

(instead of B > N), which significantly simplifies the analysis.

Information Structure For our main result, we assume that the warden’s choice of γ cannot

be observed by the prisoners, and prisoners cannot coordinate their actions. In appendix

B, we consider other information structures for our model and derive standard results for

comparison with our result.

3. Analysis

3.1. Preliminary Analysis

We begin by showing that there exist only equilibria in which all prisoners play r with the

same probability p in equilibrium. Intuitively, this follows from the strategic complementarity

between prisoners’ actions. If pi < pj, then i would view the probability that “others” revolt

higher than j. But this would imply that i has higher incentives to revolt than j which

contradicts pi < pj.

Lemma 1. (All equilibria are prisoner symmetric) There are no equilibria in which

prisoners revolt with prisoner dependent probabilities pi and pj 6= pi for some prisoners i and

j.

We can quickly see that equilibria can only exist in mixed strategies: If the prisoners

revolted for sure, the warden would best respond by setting the guard level to γ = N .

Consequently, the revolt is unsuccessful and revolting is not a best response for the prisoners.

Alternatively, the warden would best respond with γ = 0 if the prisoners played n for sure.

But in this case revolting is a best response. Consequently, the prisoners (and possibly also

the warden) will mix and revolts will succeed with some probability in equilibrium.

In any mixed equilibrium, the number of prisoners playing r follows a binomial distribution

as every prisoner plays r with probability p and the prisoners’ choices are independent. Call

this distribution G and its probability mass function g. More precisely, g(m) =
(
N
m

)
pm(1 −

p)N−m is the probability that m prisoners revolt if each prisoner revolts with probability p.

Clearly, the warden’s best response puts positive probability only on integers between 0

and N . Therefore, it is without loss of generality to denote the warden’s (mixed) strategy

by the distribution F with probability mass function f over the domain {0, 1, . . . , N}. A

(mixed) strategy F is a best response by the warden if and only if the following condition
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holds:

γ′ ∈ supp(F ) ⇒ γ′ ∈ arg max
γ∈{0,1,...,N}

−(1−G(γ))B − γ. (1)

The warden has to be indifferent between any two γ0 and γ1 in the support of F which means

that the following equation has to hold

B (G(γ0)−G(γ1)) = γ0 − γ1 (2)

for any γ0 and γ1 in the support of F . Note that G is S-shaped because it is a binomial dis-

tribution, i.e. g is first strictly increasing (up to the mode of G) and then strictly decreasing.

This property leads – together with assumption 1 – to the following result.

Lemma 2. (Support of the warden’s equilibrium strategy) In any mixed strategy equi-

librium, the support of F consists of at most two elements and these two elements are ad-

jacent, i.e. the warden mixes between γ1 and γ1 + 1 with γ1 ∈ {0, . . . , N − 1}. For any

γ1 ∈ {0, . . . , N − 1}, there exists a unique p ∈ (0, (γ1 + 1)/N) such that γ1 and γ1 + 1 are the

two global maxima of the warden’s utility.

γ

Cost of γ/
Protection

N

B ∗G 45◦-line

γ1γ1 + 1

Figure 1: Illustration of the equilibrium.

We illustrate the lemma using figure 1. For every individual revolt probability p, we get

a cumulative distribution function G(m) that gives the probability that m or fewer prisoners

revolt – in other words, the probability that a guard level γ = m successfully prevents a

breakout. This function G is (multiplied by B) given by the dots (we concentrate on values

at integers). B ∗ G(γ) denotes the expected benefit of having γ guards as it is the value of
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preventing a breakout multiplied with the probability of doing so. The dashed line gives the

cost of setting a guard level γ, which is simply γ. The warden optimally mixes between guard

levels that maximize the difference between B ∗ G(γ) and γ. Intuitively, he trades off the

additional cost of increasing the guard strength with reducing the probability of a breakout.

Choosing a higher γ than γ1 + 1, for example, would increase the cost by much more than

the probability of preventing breakouts (weighted by the disutility of a breakout), and is

therefore not optimal. If there are several guard levels where the difference is equivalent, the

warden is indifferent between them. The example illustrates our two intermediate results:

(a) The warden will never mix between more than two guard levels, since the concavity of G

(above the mode) means that the difference between B ∗G and cost cannot be equal in three

or more points. (b) For every γ1, γ1 + 1 we can find a p such that the warden is indifferent

between the two guard levels, by finding a p such that the resulting G has the maximum

distance from the 45-degree line at γ1 and γ1 + 1. The condition p < (γ1 + 1)/N is equivalent

to saying that γ1 is weakly above the mode of G. That is, the optimal guard level will be in

the concave part of G which is again in line with figure 1.

In equilibrium, each prisoner must be indifferent between revolting and not revolting.

This indifference condition is given by

Eγ [−qGN−1(γ − 1) + b(1−GN−1(γ − 1))] = 0 (3)

where the expectation over γ is taken with respect to the warden’s optimal strategy F and

GN−1 is the binomial distribution with N−1 prisoners, i.e. gN−1(m) =
(
N−1
m

)
pm(1−p)N−1−m

and GN−1(m) =
∑m

i=0 gN−1(i). Note that the probability of revolting p and the guard level

γ1 of a mixed equilibrium are determined simultaneously by (1) and (2) as the warden’s own

mixing probability does not play a role in these conditions. Given these two values, (3) will

determine the equilibrium mixing probability of the warden.

We now turn to the question which guard levels can be chosen in equilibrium. Lemma

2 stated that we can concentrate on equilibria where the warden mixes over γ1 and γ1 + 1

for γ1 ∈ {0, . . . , N − 1}. Furthermore, the warden’s incentives do not pose an obstacle for

the existence of such an equilibrium for any γ1 ∈ {0, . . . , N − 1} as there is always a p for

which γ1 and γ1 + 1 are optimal. Whether an equilibrium exists for γ1 ∈ {0, . . . , N − 1} is

therefore determined by the prisoner’s indifference condition. More precisely, a mixed strategy

equilibrium where the warden mixes over γ1 and γ1 + 1 exists if and only if a prisoner strictly

preferred to revolt if the warden played γ1 for sure and strictly preferred not to revolt if the

warden played γ1 + 1 for sure (holding fixed the probability p with which the other prisoners
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revolt). Defining

∆(γ) = −qGN−1(γ − 1) + b(1−GN−1(γ − 1)) (4)

as the utility difference of a prisoner between playing revolt and not revolt if the warden

uses γ guards for sure, this can be expressed as follows: An equilibrium in which the warden

mixes between γ1 and γ1 + 1 exists if and only if ∆(γ1) > 0 > ∆(γ1 + 1). In this case, the

equilibrium mixing probability with which the warden plays γ1 is

z =
−∆(γ1 + 1)

∆(γ1)−∆(γ1 + 1)
. (5)

Note that several equilibria can exist because ∆ is not necessarily monotone: While both

terms in (4) are directly decreasing in γ, there is an indirect effect through p: A higher γ is

only optimal for the warden if the revolt probability p is higher. This, however, implies that

∆ increases. Which of the two effects dominates (direct effect through γ or indirect effect

through p) is a priori unclear. However, ∆(0) > 0 as revolting is dominant if the guard level

is zero and ∆(N) < 0 as not revolting is dominant when the guard level is N . Consequently,

at least one equilibrium exists.

We have in this subsection therefore established the following:

Result 1. In every equilibrium, each prisoner mixes over r and n and all prisoners use the

same mixed strategy. The warden mixes between at most two guard levels γ1 and γ1 + 1.

3.2. Unique Equilibrium for large N

Making use of the preliminary results from the previous section, we can now show our main

theorem:

Theorem 1. (Unique equilibrium for large N) Take b and q as given. Let N be suffi-

ciently large and B such that assumption 1 is satisfied.5 Then, the warden mixes between 0

and 1 in the unique equilibrium. The probability of a breakout is arbitrarily close to zero and

GN−1(0) is arbitrarily close to one for sufficiently high N . The warden’s payoff is bounded

from below by a constant.

After having derived the intermediate results in section 3.1, we can extend the intuition

for theorem 1 that we gave in the introduction. Recall that there are three requirements

for an equilibrium where the warden mixes between guard levels γ1 and γ1 + 1: (i) The

warden must be indifferent between the guard levels, (ii) both guard levels must be better

than all other guard levels, and (iii) the prisoners must be indifferent between revolting and

5Assumption 1 links B and N . The theorem should be understood in the following way: Take b and q as
given; then there is an N̄ such that for all N ≥ N̄ and all B satisfying assumption 1, the results hold.
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γ γ

(A) small N (B) large N

B

N

B

N

B ∗G 45◦-line 45◦-line

γ1 γ1 + 1 γ1γ1 + 1

Figure 2: An illustration of theorem 1.

not revolting. Figure 2 shows, similar to figure 1, a distribution G of attacking prisoners so

that the first two requirements are fulfilled. In particular, by (2), a line through the points

(γ1, BG(γ1)) and (γ1 + 1, BG(γ1 + 1)) would be parallel to the 45◦ line.

The third requirement can only be fulfilled if the probability of a successful revolt is

sufficiently high, since it is otherwise optimal for the prisoners to never revolt. In panel (A),

where N is relatively small, this is possible: There is a positive probability that the number

of revolting prisoners is larger than γ1. This can be seen on the vertical axis as B ∗G(γ1) is

well below B. Hence we can find a mixing probability for the warden that makes prisoners

indifferent between revolting and not revolting. But if N gets larger (panel B), the probability

of a successful revolt converges to 0 for both γ1 and γ1 + 1 since the binomial distribution

G becomes more concentrated – and therefore steeper – around its mode (which is always

smaller than γ1) for large N . Then there exists no mixing between these two guard levels that

would actually make the prisoners indifferent, and thus requirement (iii) cannot be fulfilled

for large N and γ1 > 0. The only equilibrium for large N is the one where γ1 = 0. Then

each prisoner has the possibility of successfully revolting on his own, and therefore no longer

cares about the probability with which others revolt.

The result that GN−1(0) is close to one if N is large states that every prisoner expects all

other prisoners to not revolt. Given GN−1(0) ≈ 1, the equilibrium is in fact similar to a game

where each prisoner faces the warden one-on-one without any prospects of support by his

fellow inmates. The prisoners’ coordination problem is, in this sense, maximally exploited.
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While we derived our result for completely mixed equilibria, this does not necessarily

mean that it is only relevant for situations with full mixing and the permanent possibility of

a successful attack. We would like to point out that our result mainly means that for large

N , there is a unique equilibrium in which the breakout possibility approaches zero. If we use

slightly different strategy sets, this equilibrium needs not necessarily be mixed. Assume that

model parameters are such that a unique equilibrium would exist according to theorem 1,

and let zeq be the probability of playing γ = 1 in this equilibrium. Then we can analogously

derive our result in a modified model in which there is some minimum guard level that the

warden cannot go below:

Corollary 1. (Minimal guard requirement) Suppose the warden has to set a guard level

of at least γmin ≥ 1 with probability of at least zmin > zeq. Then there is a unique equilibrium

in which the warden sets γmin with probability zmin (and γ = 0 with probability 1− zmin) and

prisoners choose p = 0.

This corollary clarifies the right interpretation of theorem 1: The main result is not that

the warden uses zero (or one) guards for large N – which might indeed seem unrealistic in

some applications. Instead the main insights are that (i) equilibrium multiplicity reduces to

uniqueness and the probability of a breakout approaches zero for large N , and that (ii) this

is hugely advantageous for the warden.

Another remark concerns the need for “sufficiently large N” in theorem 1. While proving

the uniqueness result indeed requires the use of limits, the following corollary provides a

sufficient condition for the existence of the equilibrium in which the warden mixes between

guard levels 0 and 1.

Corollary 2. An equilibrium in which the warden mixes between guard levels 0 and 1 exists

if N > b/q.

For small N , therefore, there may be many equilibria and mixing between 0 and 1 may

not be an equilibrium. For sufficiently large N , this equilibrium exists and is unique. Figure

3 illustrates equilibrium existence and uniqueness for example parameters.

4. Discussion

4.1. Generalization

While we use the simple structure of regime change games as in Morris and Shin (1998) to

model prisoner preferences, players with other objectives might be relevant in some applica-

tions. For instance, a prisoner’s payoff if more than γ prisoners revolt could be b regardless
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N10 20 30 40 50

γ1 45◦

Figure 3: An illustration of equilibrium existence and uniqueness for different N . Each dot
means that an equilibrium in which the warden mixes between γ1 and γ1 + 1 exists for the
corresponding N , with the other parameters being B = N + 1, b = 4 and q = 1. An
equilibrium in which the warden mixes between 0 and 1 exists for all N except N = 2; for
larger N the set of equilibria becomes weakly smaller until the 0-1 equilibrium is unique.

of his own action; then prisoner payoffs are similar to a threshold public good game. As this

introduces a free riding problem, prisoners’ actions are no longer strategic complements and

lemma 1 will no longer hold. If, however, we nevertheless concentrate on prisoner symmetric

equilibria, i.e. equilibria in which each prisoner uses the same probability to revolt p, the

proofs of lemma 2 and theorem 1 will go through with virtually no change. It is therefore

useful to clarify which assumptions on prisoner preferences are necessary to obtain our results

within the class of prisoner symmetric equilibria.6

To do so let ρ(k, γ) be the payoff difference between revolting and not revolting if k of the

N −1 other prisoners revolt and the warden chooses γ guards. Effectively we need only three

assumptions for our results to hold. First, ρ(0, 0) > 0. That is, a prisoner strictly prefers to

revolt if there are no guards and no one else revolts. If this assumption did not hold, there

would be a trivial equilibrium in which no one revolts and no guards are present. Second,

if γ ≥ k + 1, then ρ(k, γ) < −ε for some ε > 0. That is, not revolting is strictly optimal if

it does not lead to a successful breakout. Third, ρ is bounded. This ensures that expected

payoffs are well defined when taking limits as the number of prisoners gets large.

Any prisoner payoff function ρ satisfying the three properties above will lead to the results

in theorem 1 if we restrict attention to prisoner symmetric equilibria. To illustrate how this

extends the scope of our paper, consider first the payoffs from regime change games that we

used in the main text as a starting point:

ρrc(k, γ) =

b if γ ≤ k

−q else.

6Symmetric equilibria are particularly inuititive as all prisoners are modelled symmetrically. Furthermore,
symmetric equilibria are also the main object of interest in evolutionary game theory; see, for instance, Peña
and Nöldeke (2018) or Nöldeke and Peña (2020) for recent contributions in evolutionary game theory that link
properties of a payoff difference function ρ (as below) and the number of players to properties of equilibria.
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Our generalization clarifies that costs of revolting as well as benefits of a breakout could

very well depend on the number of revolting prisoners k or the number of employed guards

γ as long as the sign restrictions hold. This could for instance be relevant in bank run

applications where the expected payoff from withdrawing might depend on the extent to

which withdrawals exceed liquidity reserves. We could also allow the free riding preferences

mentioned above where

ρfr(k, γ) =


b if γ = k

−q if γ > k

0 else.

Again the parameters b and q could depend on k and γ as long as b(0, 0) > 0 and q(k, γ) > ε

for some ε > 0 and all γ ≥ k + 1.

4.2. Comparisons, Extensions and Robustness

Appendix B compares our results to models with different information structures. More

precisely, we allow the prisoners to coordinate or to observe the warden’s guard choice before

choosing their actions. Unsurprisingly, these setups are less favorable for the warden than

the one presented here if the number of prisoners is large. In the supplementary material to

this paper, we consider several extensions of our model and the setups of appendix B. We

show that our results as well as the comparison between models still hold in these extensions.

The considered extensions are as follows:

• We consider payoff functions such that the payoff −q of an unsuccessfully revolting pris-

oner depends on the guard level γ. While the precise equilibrium mixing probabilities

change, the analysis remains qualitatively the same and the equilibrium probability of

revolting remains arbitrarily close to zero.

• We consider payoff structures such that the payoff of a non-revolting prisoner depends

on whether a breakout occurs or not. Our results remain unchanged unless this free

riding possibility destroys the supermodularity of the game among prisoners (in which

case there can be prisoner-asymmetric equilibria similar to the volunteer dilemma, see

discussion above).

• We provide a generalization of our model in which the probability of a breakout increases

monotonically in the number of revolting prisoners.

• We consider an extension in which attackers differ in their size. The warden will then

not mix between 0 and 1, but between 0 and the size of the largest attacker.
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4.3. Jeremy Bentham and the Literature that Followed

Our main result has an interesting parallel to the ideas of Jeremy Bentham (1787), who

thought about how to build the perfect prison. In a series of letters, he proposed the “panop-

ticon”: A prison in which prisoners are not only kept separate from each other, but also (by

an intricate construction) unable to see who is guarding them.7 His prediction was that with

this construction, a single guard could prevent revolts and breakouts8 – an observation that

is similar to our result.9

In the 230 years since Bentham, many scholars have interpreted this panopticon as a

metaphor for modern society. Most prominently, Foucault (1975) points out that panopti-

cism, a system in which individuals self-discipline because of the omnipresent possibility of

being disciplined, has made modern society possible. Order is no longer maintained in a

“contest of violence” between those opposing and those defending it. Instead, the docility of

individuals allows for cost-saving minimal enforcement: There is neither waste of resources

through unused guard capacity nor fruitless attempts at revolting.10 This was a prerequisite

for the establishment of organizations, firms, schools in which individuals have internalized

the rules and behave in the desired way without constant supervision. Others (e.g. Zuboff,

1988) have suggested that modern computers and indeed the internet are panoptica, where

everyone can at any time be under surveillance by a small group – an idea that has gained

credence by recent revelations of mass surveillance by intelligence agencies.

Our result captures the intuition on how and why panopticism would work in a formal,

game-theoretical model.

7Bentham’s plans ensured that prisoners could not see into the guards’ “lodge”: “To the windows of the
lodge there are blinds, as high up as the eyes of the prisoners in their cells can, by any means they can employ,
be made to reach.” He also emphasized the lack of communication possibilities: “These cells are divided from
one another, and the prisoners by that means secluded from all communication with each other, by partitions
in the form of radii issuing from the circumference towards the center ...

8Bentham (p. 46): “Overpowering the guard requires an union of hands, and a concert among minds. But
what union, or what concert, can there be among persons, no one of whom will have set eyes on any other
from the first moment of his entrance? [... A] greater multitude than ever were yet lodged in one house might
be inspected by a single person.”

9A referee correctly points out that part of Bentham’s idea is that prisoners never know whether they are
currently observed. We discuss this possibility briefly in the extension on uncertain punishment but ignore
the questions about higher-order beliefs that this may raise. Chwe (2003) provides an interesting discussion
of the panopticon and higher-order knowledge that is mostly orthogonal to ours. Recent developments in
the analysis of games in which players are uncertain about the extensive-form structure (Penta et al., 2019;
Doval and Ely, 2020) may provide tools to study this aspect of the panopticon in greater detail.

10“Hence the major effect of the Panopticon: to induce in the inmate a state of conscious and permanent
visibility that assures the automatic functioning of power. So to arrange things ... that the perfection of
power should tend to render its actual exercise unnecessary, ... that the inmates should be caught up in a
power situation of which they are themselves the bearers.” (Foucault, 1975)
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5. Conclusion

In this paper, we have shown how the character of coordination games changes drastically if

we add a single player with misaligned preferences. Most canonical regime change games are

motivated by real world situations – such as speculative attacks, revolutions or prison riots

– in which such a defender exists. With such a defender as strategic player, we show that

a unique Nash equilibrium emerges in a canonical regime change game. In this equilibrium,

hardly any ressources are used to defend but the defender nevertheless prevents sucessful

attacks almost certainly if the number of attackers is large. The key insight is that a large

group of attackers can collectively not be as unpredictable as necessary to attack successfully

(with non-negligible probability).

One crucial assumption of our model that we would like to stress is the inability of

attackers to condition their behavior on each other’s. In situations where such conditioning is

possible – be it through contracts or through sequential and observable play – the coordination

problem weakens or disappears. We can see examples of this in the real world. Prisons,

oppressive regimes and (adversarial) employers make more use of surveillance than actual

“guards”. But once people are on the street, that is not sufficient anymore: Police forces

at violent demonstrations or football riots are not much smaller than the crowds they are

sent to control. This is because protesters (and hooligans) can condition their behavior on

each other: by being in the same place, being able to observe each other make sequential

choices, and possibly even having some hierarchy among themselves. In fact, this appears to

be necessary for potential riots as most of the attackers will – even in the absence of police

forces – behave quite peacefully in their daily lifes when they cannot directly observe their

comrades. Our model – in which attackers are assumed to act independently – is more in

line with this everyday situation. It also speaks, albeit on a high level of abstraction, to

applications in large anonymous markets like financial markets.
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Appendix

A. Proofs

Proof of lemma 1: We will now show that a restriction to symmetric equilibria, i.e. equilibria

in which all prisoners revolt with the same probability p, is without loss of generality. That

is, there are no equilibria in which prisoners revolt with prisoner dependent probabilities pi

and pi 6= pj for some prisoners i and j.

In the main text, we already argued that equilibria cannot be pure, i.e. there has to

be at least one prisoner who uses a mixed strategy pi with 0 < pi < 1. The argument is

simple: If all prisoners used a pure strategy in equilibrium, the warden would be certain of

the number of revolting prisoners, say k. In this case, the warden best responds by setting

γ = k which prevents a breakout for sure while any lower guard level would lead to a breakout

with probability 1. If k > 0, the revolting prisoners could profitably deviate to not revolting.

If, however, γ = k = 0, then each prisoner could profitably deviate by revolting. Since at

least one prisoner has a profitable deviation, we can conclude that there is no equilibrium in

which all prisoners use pure strategies. Without loss of generality, let us therefore assume

that prisoner 1 uses a completely mixed strategy, i.e. 0 < p1 < 1.

First, we will show the following: Take any equilibrium. If 0 < pi ≤ pj < 1 holds for two

prisoners i and j, then pi = pj. To see this, note that both i and j have to be indifferent

between revolting and not revolting because both use a completely mixed strategy. If pj > pi

and j is indifferent between revolting and not revolting, then i would strictly prefer to revolt:

For any γ > 0, the probability that at least bγc other prisoners revolt is higher for i than for

j if pj > pi. Since j was indifferent, i will then strictly prefer to revolt. This contradicts that

i is indifferent (because he plays a completely mixed strategy) and we must therefore have

pi = pj.

Note that the previous argument actually says that if two players are indifferent between

revolting and not revolting, then they must play revolt with the same probability. This is a

bit stronger than what we said before because it rules out the possibility that some prisoner

plays revolt with probability 0 or 1 while being indifferent between the two actions. (Recall

that prisoner 1 uses a completely mixed strategy.)

What remains to be shown is that no prisoner strictly prefers one of the two actions in

equilibrium. Suppose to the contrary that prisoner j strictly preferred to revolt and therefore

plays revolt with probability 1 in equilibrium. Now consider prisoner 1: Since p1 < pj = 1,

the probability that at least bγc other prisoners revolt is higher from prisoner 1’s perspective

than from prisoner j’s perspective. Therefore, prisoner 1 strictly prefers to revolt given that
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prisoner j strictly prefers to revolt. This contradicts that prisoner 1 plays a completely mixed

strategy in equilibrium. Consequently, there cannot be a prisoner j who strictly prefers to

revolt.

An analogous argument yields that there is no prisoner who strictly prefers not revolt.

This completes the proof.

Proof of lemma 2: We start with the first part of the lemma. As a first step, we show

a weaker result: The support of the warden can consist of at most three elements. Denote

the mode of G by γm (for a given p).11 The binomial distribution G has the property that

G is convex on {0, . . . , γm} and G is concave on {γm, . . . , N}. Therefore, the maximization

problem of the warden over the domain {0, . . . , γm} is convex and consequently only the

boundary values 0 and γm can be local maxima (on this restricted domain). If we take

{γm, . . . , N} as domain of the warden’s maximization problem, the problem is concave and

therefore (because γ takes integer values) this problem can have at most two local maxima

γ1 and γ2 such that γ2 = γ1 + 1 (clearly, it could have only one local maximizer as well in

which case we are already done). This implies that (1) has (at most) three local maxima:

one at γ0 = 0, γ1 weakly above γm and possibly γ2 = γ1 + 1. Therefore, f ’s support will

contain at most three elements.

Next we will show that the case where the warden is indifferent between γ0 = 0, γ1 ≥ γm

and γ2 = γ1 + 1 is impossible. To see this, note that the fact that the warden is indifferent

between γ1 and γ1 + 1 implies that g(γ1 + 1) = 1/B. The warden is indifferent between γ1

and γ0 if and only if (G(γ1)−G(0))/γ = 1/B. This is equivalent to saying that the average

g(γ) for γ ∈ {1, . . . , γ1} equals 1/B. Since γ2 − 1 ≥ γm and as g(γ2) = 1/B, we know

that g(γ) < 1/B for all γ > γ2 (because g is strictly decreasing above the mode). Since∑N
γ=0 g(γ) = 1 ≥ (N + 1)/B by assumption 1 (i.e. the average g(γ) is at least 1/B), this

implies that g(0) ≥ 1/B. But then the single peakedness of g implies that g(γ) > 1/B for

all γ ∈ {1, . . . , γ1} (recall that g(γ1 + 1) = 1/B) which contradicts our earlier result that the

average g(γ) for γ ∈ {1, . . . , γ1} is at most 1/B.12

Last we reuse the argument of the previous paragraph to show that there cannot be an

equilibrium in which the warden mixes between γ0 = 0 and γ1 > 1. Suppose there was such

an equilibrium. Since the warden prefers γ1 to γ1 +1, we must have g(γ1 +1) ≤ 1/B.13 As γ1

has to be at least as high as the mode γm, we know that g(γ) ≤ g(γ1 + 1) for all γ ≥ γ1 + 1.

The warden prefers γ1 to γ1 − 1 which implies g(γ1) ≥ 1/B. Furthermore, the warden has

11In the non-generic case that G has two modes, let γm be the smaller one.
12This last argument can be easily extended using inequalities to show that whenever there are γ1 and

γ2 = γ1+1 forming a local maximum of the warden’s profit this local maximum must be the global maximum;
i.e. is preferred to γ0 = 0.

13For γ1 = N , this step can be skipped and the rest of the argument works analogously.
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to be indifferent between γ0 and γ1 which implies that the average g(γ) for γ ∈ {1, . . . , γ1}
equals 1/B. As

∑N
γ=0 g(γ) = 1 ≥ (N + 1)/B, we obtain that g(0) ≥ 1/B. But the single

peakedness of g and the fact that g(γ1) ≥ 1/B would then imply that the average g(γ) for

γ ∈ {1, . . . , γ1} is strictly above 1/B contradicting that the warden is indifferent between

γ0 and γ1. Taking the last three paragraphs together, the warden’s equilibrium support can

consist of at most two elements and these two elements have to be adjacent.

Finally, we turn to the second part of the lemma. Denote the expected warden payoff by

π(γ) and note that π(γ1) = π(γ1 + 1) holds iff

g(γ1 + 1) = 1/B.

This equation (viewed as an equation in p which indirectly determines g) has a solution

p < (γ1+1)/N : To see this note that g(γ1+1) =
(

N
γ1+1

)
pγ1+1(1−p)N−γ1−1 viewed as a function

of p is 0 for p = 0 and single peaked with its maximum at p = (γ1 + 1)/N . Furthermore,

g(γ1+1) is continuous in p. Hence, it is sufficient to show that g(γ1 + 1)|p=(γ1+1)/N > 1/(N+1)

as 1/(N + 1) ≥ 1/B by assumption 1. Note that for p = (γ1 + 1)/N , γ1 + 1 is the mode and

therefore the maximum of g (viewed as function over γ). If g(γ1 + 1)|p=(γ1+1)/N ≤ 1/(N + 1),

then g(γ) ≤ 1/(N + 1) for all γ (with strict inequality for some) which contradicts that g is

a probability mass function (it cannot sum to 1!). Hence, g(γ1 + 1)|p=(γ1+1)/N > 1/(N + 1)

which proves that there is a p < (γ1 + 1)/N such that g(γ1 + 1) = 1/B.

The fact that p < (γ1 + 1)/N implies that γ1 + 1 will be above the mode. As π is concave

on {γm, . . . , N}, g(γ1 +1) = 1/B implies that γ1 and γ1 +1 yield a higher warden payoff than

any other γ weakly above the mode. Since π is convex on {0, . . . , γm}, it follows that γ1 and

γ1 + 1 are global maximizer of π iff π(0) ≤ π(γ1 + 1). This last inequality can be written as

G(γ1 + 1)−G(0)

γ1 + 1
≥ 1

B
(6)

(where G is the cumulated binomial distribution for the p < (γ1 + 1)/N solving g(γ1 + 1) =

1/B). The same argument as above shows that (6) holds: Suppose it did not. Then the

average g(γ) for γ ∈ {1, . . . , γ1 +1} would be strictly less than 1/B and as γ1 +1 is above the

mode and g(γ1 + 1) = 1/B, the same holds for γ > γ1 + 1. Using the assumption B ≥ N + 1

and the fact that g(γ) has to sum to 1 over all γ ∈ {0, . . . , N}, it follows that g(0) ≥ 1/B.

But then the single peakedness of g and g(γ1 + 1) = 1/B contradict that the average g(γ)

over {1, . . . , γ1 + 1} is less than 1/B.

Proof of theorem 1: We will first show that an equilibrium in which the warden mixes

over 0 and 1 exists for N sufficiently high. Second, we will derive a lower bound on the warden
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payoff for this 0-1 mixed equilibrium. Finally, we will show uniqueness of the equilibrium for

N sufficiently high. The other results in the theorem appear as intermediate results of the

uniqueness proof.

To facilitate the generalizations in section 4.1, we introduce the payoff difference between

playing r and playing n when γ guards are employed and k other prisoners revolt as ρ(k, γ)

which in the model of the main text is

ρ(k, γ) =

b if γ ≤ k

−q else.

It will, furthermore, be convenient to denote B = α(N + 1) for some α ≥ 1 which can

be done by assumption 1. In a mixed equilibrium where the warden mixes over 0 and 1, the

revolt probability p is determined by the warden’s indifference condition 1 = BNp(1−p)N−1.
As pointed out in the proof of lemma 2, this p is below 1/N . The first and main step in

establishing existence of the mixed equilibrium with γ1 = 0 (for large N) is to show that

p < 1/N2. By B = α(N + 1) with α ≥ 1, the indifference condition can be written as

p(1− p)N−1 − 1/(α(N2 +N) = 0. Note that the left hand side of this equation is increasing

in p by p < 1/N . To show p < 1/N2, it is therefore sufficient to show that the left hand

side is greater than 0 for p = 1/N2. This is (after multiplying through by N2) equivalent to

showing that (
1− 1

N2

)N−1
>

1

α
(
1 + 1

N

)
which can be rewritten as(

1− 1

N2

)N
>

1− 1/N2

α
(
1 + 1

N

) =
N2 − 1

αN(N + 1)
=

1− 1/N

α
.

This inequality holds true as (1− 1/N2)
N

= 1−1/N+
∑N

i=2

(
N
i

)
(−1/N2)i and

∑N
i=2

(
N
i

)
(−1/N2)i >

0 because each positive term in the sum is higher than the immediately following negative

term (recall that
(
N
i+1

)
≤
(
N
i

)
N). Given α ≥ 1, the inequality above therefore holds for all

N which implies p < 1/N2 (where p is the revolt probability making the warden indifferent

between the optimal guard levels 0 and 1).

To show that the mixed equilibrium with mixing over 0 and 1 exists, we have to establish

that ∆(1) < 0. Given p < 1/N2, GN−1(0) = (1 − p)N−1 > (1 − 1/N2)N−1. As limN→∞(1 −
1/N2)N−1 = 1, this implies that GN−1(0) → 1 as N → ∞.14 The expected payoff difference

14Just to be precise, the limit is 1 as (1− 1/N2)N−1 = 1− (N − 1)/N2 +
(
N−1

2

)
1/N4− . . . where all terms

but the first approach 0 as N grows large.
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between revolting and not revolting tends therefore to ρ(0, 1) < 0 as N → ∞ if γ = 1.

Consequently, ∆(1) < 0 for N sufficiently high; i.e. the 0-1 mixed equilibrium exists.

The warden’s payoff in the 0-1 mixed equilibrium is −B(1− (1− p)N) = −α(N + 1)(1−
(1 − p)N) > −α(N + 1)(1 − (1 − 1/N2)N). We now show that the latter term converges to

−α as N gets large: This is equivalent to showing that lim
N→∞

N − (N + 1)
(
N2−1
N2

)N
= 0. The

term in the limit can be written as

N2N+1 − (N + 1)(N2 − 1)N

N2N
.

Using the binomial expansion and making use of the fact that
(
N
1

)
= N , we can see that this

is
N2N+1 −N2N+1 −N2N +N2N +N2N−1 − . . .

N2N

where the first four terms cancel each other out and the remaining expression only contains

powers of N smaller than 2N in the numerator, so that the expression goes to zero as N gets

large. Therefore, limN→∞(N + 1)(1− (1− 1/N2)N) = 1 and the warden’s payoff is bounded

below by −α in the warden 0-1 mixed equilibrium for N sufficiently large.

Finally, we show uniqueness of the mixed equilibrium with γ1 = 0 and N large. To do so,

we need two intermediate results that are stated as lemmas below (lemma 3 and 4). To start

with, define an equilibrium candidate as a (p, γ) such that the warden’s indifference condition

holds, that is g(γ + 1) = 1
α(N+1)

, and p < (γ + 1)/N . An equilibrium candidate leads to an

equilibrium if ∆(γ) ≥ 0 and ∆(γ + 1) < 0, that is if GN−1(γ − 1) ≤ b/(q + b) < GN−1(γ).

We will show that for large N , there are no equilibrium candidates with γ ≥ 1 that satisfy

the equilibrium condition ∆(γ) ≥ 0.

In the following, we make use of known results on the shape and the tail bounds of the

binomial distribution. Recall that gN(γ) =
(
N
γ

)
pγ(1− p)N−γ, i.e. the probability mass of the

binomial distribution B(N, p) at γ. GN is the corresponding cumulative distribution function;

the definitions of gN−1 and GN−1 are analogous.

Lemma 3. (Breakout probability approaches zero for large N) For every ε > 0, there

exists an Nε such that for all models with more than Nε prisoners 1 − GN(γ) < ε holds in

every equilibrium candidate.

Proof: Using the Chernoff-Hoeffding Theorem (Hoeffding, 1963), we get

1−GN(γ) ≤
(

N

γ + 1

)γ+1(
N

N − γ − 1

)N−γ−1
pγ+1(1− p)N−γ−1. (7)

For any equilibrium candidate in which the warden mixes over γ and γ + 1, we therefore
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obtain

1−GN(γ) ≤
(

N

γ + 1

)γ+1(
N

N − γ − 1

)N−γ−1
1

α(N + 1)
(
N
γ+1

)
where we plug the warden’s indifference condition into (7). It is convenient to define m = γ+1

as this allows to write the previous expression as

1−GN(γ) ≤ NN(
N
m

)
mm(N −m)N−mα(N + 1)

. (8)

We are going to show that the RHS term converges to zero as N grows large. We have to

show this for any m ∈ {1, . . . , N} and in particular m might depend on N . That is, we want

to show that the expression above converges to zero for any m(N). To do so, let m∗(N) be

the m maximizing the expression above. We show that the expression converges to zero even

if we plug in m = m∗(N).

Note that the term in (8) is maximal (for a given N) if m minimizes
(
N
m

)
(m/N)m(1 −

m/N)N−m. Note that
(
N
m

)
(m/N)m(1 − m/N)N−m is the probability mass of a binomial

distribution with probability p = m/N evaluated at its mode m. Hence, to minimize(
N
m

)
(m/N)m(1 − m/N)N−m we have to find the probability p = m/N for which the modal

density of a binomial distribution is minimized. This is the case for p = 1/2, i.e. m = N/2.15

Consequently, ∀m(N) :
(
N
m

)
mm(N −m)N−m ≤

(
N
N
2

) (
N
2

)N
and (8) becomes

1−GN(γ) ≤ NN(
N
N/2

)
(N/2)Nα(N + 1)

=
2N(

N
N/2

)
α(N + 1)

. (9)

Since the central binomial coefficient
(
N
N/2

)
is bounded from below by 2N/

√
2N (see the sup-

plementary material for an elementary proof of this), we obtain that the RHS term converges

to zero as N →∞ which implies the lemma.

We will now use this result to show that not only the probability of a breakout tends to

zero if N is large, but also the probability for each prisoner that a revolt will be successful

if he decides to revolt. This is given by 1−GN−1(γ − 1), i.e. the probability that at least γ

other prisoners revolt (so that the remaining prisoner can push the number to γ+1 or higher

by revolting himself).

15If N is odd, both m = bN/2c and m = dN/2e will lead to minimal modal density. We concentrate on
the case where N is even for notational convenience. Obviously, our results also hold for odd N .
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Lemma 4. (Chance of breakout tends to 0 if γ ≥ 1 and N large) For every ε > 0,

there exists an Nε such that in all models with more than Nε prisoners 1−GN−1(γ − 1) < ε

in every equilibrium candidate with γ ≥ 1.

Proof: Note that 1−GN−1(γ− 1) = 1−GN−1(γ) + gN−1(γ) ≤ 1−G(γ) + gN−1(γ). From

lemma 3 we know that 1−G(γ) is arbitrarily close to zero in every equilibrium candidate (for

N sufficiently large). If gN−1(γ) becomes arbitrarily small as N grows large, we are therefore

already done. For the remainder of the proof let us therefore assume that gN−1(γ) does not

become arbitrarily small. We will show directly that 1 − GN−1(γ − 1) converges to zero for

large enough N in this case.

By the warden’s indifference condition, gN(γ + 1) = 1
α(N+1)

, and we can write

gN−1(γ) = gN(γ + 1)
γ + 1

pN
=

γ + 1

αp(N2 +N)
≤ γ + 1

αpN2
.

If gN−1(γ) does not become arbitrarily small, neither does (γ + 1)/(αpN2) and therefore

there is a sequence of tuples (N, p(N), γ(N)) which are strictly increasing in N such that (i)

(p(N), γ(N)) is an equilibrium candidate (with the respectiveN) for each tuple (N, p(N), γ(N))

and (ii) γ(N) + 1 ≥ µp(N)N2 for each tuple in the sequence and some µ > 0.

Rearranging the latter condition gives

γ(N)−p(N)N+p(N) ≥ µp(N)N2−p(N)N+p(N)−1 = p(N)N5/4∗
(
µN3/4 − 1

N1/4

)
+p(N)−1.

(10)

We will look at two cases. First, p(N)N5/4 does not converge to zero. Then the right hand

side of (10) is weakly larger than µ̃N3/4 for some µ̃ > 0 and N sufficiently large. Therefore,
(γ(N)−p(N)N+p(N))2

N−1 ≥ (µ̃N3/4)2

N−1 > µ̃2
√
N for large N which implies that (γ(N)−p(N)N+p(N))2

N−1 will

grow without bound as N gets large. Hoeffding’s inequality (Hoeffding, 1963, Thm. 1) gives

the following upper bound for 1−GN−1(γ − 1):

1−GN−1(γ − 1) ≤ e−
2(γ−p(N−1))2

N−1 .

As we have just shown, this upper bound tends to zero as N grows large. Consequently, we

have shown directly that 1−GN−1(γ − 1) converges to zero. It remains to check the second

case in which p(N)N5/4 converges to zero. If p(N)N5/4 converges to zero, then p(N) ≤ 1/N5/4

for sufficiently high N . Consequently, GN−1(0) = (1−p(N))N ≥ (1−1/N5/4)N and the latter

converges to 1. As GN−1(0) ≤ GN−1(γ − 1) for γ ≥ 1, this implies that 1 − GN−1(γ − 1)

converges to zero which completes the proof.

Lemma 4 implies that GN−1(γ−1) is arbitrarily close to one in every equilibrium candidate
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with γ ≥ 1 as N is sufficiently large. Put differently, for any ε > 0, we can find an Nε such

that GN−1(γ1) > 1 − ε for all N ≥ Nε and all equilibrium candidates with γ ≥ 1. For

given b and q, we can find such an Nε∗ for ε∗ = 1 − b/(q + b).16 For N ≥ Nε∗ , we have

GN−1(γ − 1) > b/(q + b) for all equilibrium candidates with γ ≥ 1. Hence, no equilibrium

candidate with γ ≥ 1 satisfies the equilibrium condition GN−1(γ − 1) ≤ b/(q + b) for N

sufficiently high. This means that the equilibrium in which the warden mixes over zero and

one is the unique equilibrium for N sufficiently high.

Proof of corollary 1: Follows directly from the proof of theorem 1.

Proof of corollary 2: Let p be the revolt probability determined by the warden’s indif-

ference condition 1 = BNp(1 − p)N−1. As shown at the start of the proof of theorem 1,

p < 1/N2 and the equilibrium in which the warden mixes between 0 and 1 exists if a prisoner

finds it optimal not to revolt given that (i) all other prisoners revolt with probability p and

(ii) the warden uses 1 guard. The latter is the case if and only if b/(q + b) ≤ GN−1(0). As

p < 1/N2, a sufficient condition for this inequality is

b

q + b
≤
(

1− 1

N2

)N−1
=

(
1− 1

N2

)N
1− 1

N2

. (11)

In the proof of theorem 1, we explained that
(
1− 1

N2

)N
> 1− 1/N and therefore a sufficient

condition for (11) is
b

q + b
≤ 1− 1/N

1− 1
N2

=
1

1 + 1
N

.

Rearranging this inequality yields N > b/q.

B. Comparison to Other Information Structures

In this appendix, we compare the results of our model to results that emerge under different

information structures. In the model of the paper, the guard level was unobsevable to the

prisoners and prisoners could not coordinate. As Bentham (1787) emphasized in his descrip-

tion of the panopticon that guard level as well as other prisoners must no be observed by

the prisoners, we call the setup of the main paper the “panopticon” in this appendix. This

panopticon is compared to settings in which the guard level is observable and/or coordina-

tion among prisoners is possible.17 Table B summarizes the settings considered. The main

question we want to ask is which of the four information structures yields the highest payoff

16More generally, let ρ̄ = supk,γ ρ(k, γ) and ρ = supk,γ≥k+1ρ(k, γ) and note that ρ̄ > 0 while ρ < 0. Then,

letting ε∗ =
−ρ

−ρ+ρ̄ will ensure that not revolting is optimal in every equilibrium candidate given N ≥ Nε∗ .
17“Observable guard level” effectively means that the warden acts first, his choice is observed and all

prisoners then move simultaneously in a second stage.
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for the warden.

First, we consider a situation (“benchmark”) in which the prisoners have no coordination

problem, i.e. they can correlate their choices and act like one single player. We will show that

in this case, it does not matter for the outcome whether the warden’s choice is observable or

not: All equilibria are (in expectation) payoff-equivalent to the outcome where the warden

hires so many guards that a revolt by all prisoners would still be unsuccessful, and all prisoners

choose not to revolt.

Guards are observable:
Yes No

Coordination btw prisoners:
Yes Benchmark (=Benchmark)
No Transparency Panopticon

Table 2: The information structures we consider.

Second, we consider what happens if the prisoners cannot coordinate, but the guard level

is observable (“transparency”). This in effect turns the situation into a two-stage game and

removes the warden from the strategic considerations of the prisoners. Observable guards

can deter prisoners from revolting, but if there are visibly fewer guards than prisoners, this

also provides the prisoners information which might help them coordinate. Our model is

then equivalent to the basic structure of regime-change games that have been studied in the

literature on coordination problems and equilibrium selection (e.g. Morris and Shin, 1998).

Adding minimal uncertainty, in a way that is close to the literature on global games, can

select one of these equilibria for each level of guards. This implies that there is a minimal

level of guards that deters the prisoners from revolting. This level is quite high and depends

linearly on the number of prisoners, so that deterrence is quite costly.

Figure B displays the results of the comparison that we will derive below. Clearly, it is

essential for the warden that the prisoners cannot correlate their choices as well as that the

warden’s choice remains secret. The following paragraphs explore the different information

structures in more detail. Proofs of the formal results in this appendix can be found in the

supplementary material to this paper.

B.1. Benchmark model: Perfect coordination

We first consider a benchmark where we assume that the prisoners do not have trouble

coordinating and conditioning their behavior on each other’s choices. We distinguish two

possibilities: First, the prisoners observe the guard level set by the warden before they have

to choose their actions. Assuming the coordination problem away means here that – given

the guard level – the prisoners can coordinate on the prisoner optimal Nash equilibrium of
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Warden
payoff
(= welfare)

Number of
prisoners (N)

−45◦

Benchmark

Transparency

−θ∗

Panopticon

Figure 4: A comparison of welfare (which is equivalent to warden payoff) in the three in-
formation structures. The benchmark case is most expensive, as the warden needs as many
guards as there are prisoners. In the transparency case, the warden can prevent breakouts
with a lower number of prisoners; but the required number of guards still grows linearly in
N . In the panopticon, the warden payoff is bounded from below by a constant.

any resulting subgame.18 Hence, all prisoners play r if γ < N and all play n otherwise. Given

assumption 1, it is then optimal for the warden to choose γ = N . The payoff of the warden

is −N while the payoff of each prisoner is zero.

Second, we consider the possibility that the prisoners do not observe the guard level. As

we allow perfect coordination between the prisoners, prisoners will either all revolt or all not

revolt. This is due to the strategic complementarity between prisoners: Revolting is relatively

better for a given prisoner if other prisoners revolt too. Given that either all or no prisoners

revolt, the only two guard levels that can be best responses by the warden are zero and N .

Furthermore, the game has no pure strategy equilibrium because of the non-observability

of the guard level: If the warden chose a guard level of zero (N), the prisoners would best

respond by revolting (not revolting). But then the guard level of zero (N) is not a best

response. Therefore, we only have a mixed strategy equilibrium in which the warden mixes

between the two guard levels of zero and N and the prisoners mix between “all revolt” or “no

one revolts”. The mixing probabilities are such to keep the other side indifferent. Note that

the expected warden payoff is −N since the warden is indifferent between the equilibrium

strategy and choosing a guard level of N for sure (which guarantees a payoff of −N). The

prisoners have an expected payoff of zero as they are indifferent between their equilibrium

strategy and not revolting for sure which gives every prisoner a payoff of zero.

18This is equivalent to the prisoner optimal correlated equilibrium of the subgame because of the strategic
complementarity in the game among the prisoners.
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Both possibilities of our benchmark lead therefore to the same equilibrium payoffs for

all players. In this benchmark model, the warden has to use a large amount of resources to

prevent a revolt.

B.2. Transparency model

We will now modify our model slightly so that prisoners first observe the guard level and

then choose simultaneously and independently whether to revolt or not. If the guard level

is weakly above N , it is a dominant action for each prisoner to play n. If the guard level is

strictly below 1, it is a dominant action for each prisoner to play r. For guard levels between

1 and N , the optimal choice of a prisoner depends on what the other prisoners choose: If

strictly more than γ − 1 other prisoners revolt, a given prisoner best chooses r himself. It

is, however, optimal to choose n if less than γ − 1 other prisoners revolt. There are two

equilibria in the subgames in which γ ∈ [1, N): All prisoners revolt or no prisoner revolts.

Consequently, the prisoners face a coordination problem.

Following the approach in the global games literature, we select one of the two equilibria

by relaxing the assumption that γ is common knowledge among the prisoners. More precisely,

we show that introducing an arbitrarily small amount of noise into how prisoners observe the

guard level leads to a unique equilibrium prediction. Figure 5 shows the intuition behind this

equilibrium selection through infection.

γ

N

1

θ∗

(r dominates)

(n dominates)

(infection)

(infection)

Figure 5: Infection of beliefs among prisoners: If γ ≥ N , not revolting is a strictly dominant
strategy for all prisoners. If γ < 1, revolting is strictly dominant. If γ ∈ [1, N) and γ
is common knowledge, there are two pure equilibria: Everybody revolts or no one revolts.
When common knowledge is destroyed by the perturbation, beliefs get infected so that for
γ < θ∗, n is the unique equilibrium action, and r is the unique equilibrium action for γ > θ∗.

The perturbation works in the following way: The warden chooses an intended guard level

γ̃. The true guard level is then drawn from a normal distribution with mean γ̃ and variance
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ε′ > 0.19 That is, the warden has a “trembling hand”. Each prisoner receives a noisy signal

of γ: This signal is drawn from a uniform distribution on [γ − ε, γ + ε] with ε > 0. We are

interested in the Bayesian Nash equilibrium of this game as ε→ 0. In fact, we show that this

Bayesian game generically has a unique Bayesian Nash equilibrium as ε → 0. Furthermore,

this equilibrium does not depend on ε′. We select this equilibrium in the original game.20

Note that this setup eliminates common knowledge of the guard level. A prisoner observ-

ing signal θ knows that the true guard level is in [θ − ε, θ + ε]; he knows that each other

prisoner knows that γ ∈ [θ − 3ε, θ + 3ε]; he knows that each other prisoner knows that he

knows that γ ∈ [θ − 5ε, θ + 5ε] and so on. Higher order beliefs will therefore play a role in

determining the equilibrium. This appears to be a natural feature in a coordination game

where the driving force of one’s choice are exactly the expectations over what others do.

The following lemma contains the main technical result for the Bayesian game.

Lemma 5. (Equilibrium in the Bayesian game) Let ε′ > 0. Assume that bN/(q+b) 6∈ N
and define21

θ∗ =

⌈
bN

q + b

⌉
.

Then for any δ > 0, there exists an ε̄ > 0 such that for all ε ≤ ε̄, a player receiving a signal

below θ∗ − δ will play r and a player receiving a signal above θ∗ + δ will play n.

The lemma states that for generic parameter values – whenever bN/(q + b) is not an

integer – prisoners in the Bayesian game will revolt when they observe a signal below θ∗ − δ
and will not revolt if they observe a signal above θ∗ + δ. In the limit – as the prisoners’

observation noise ε approaches zero – δ approaches zero as well. Put differently, prisoners

play a cutoff strategy with cutoff value θ∗ in the limit: Whenever they receive a signal below

the cutoff, they play r and whenever they receive a signal above the cutoff they play n.

Now consider the warden’s decision problem (in the limit as ε→ 0). If the guard level is

strictly above θ∗, then all prisoners will receive signals above θ∗ and will therefore not revolt.

If the guard level is strictly below θ∗, then all prisoners will receive a signal below θ∗ and will

revolt. Consequently, the optimal guard level for the warden is θ∗ (or “slightly above and

arbitrarily close” to θ∗). In the limit as ε′ → 0, the warden can ensure this guard level by

19If γ has to be non-negative, one might think of a normal distribution truncated at zero. The truncation
affects neither results nor derivation.

20The reader familiar with the global games literature might wonder why we introduce a “tremble” in the
warden’s action. The reason is that the parameter which is observed with noise (the guard level γ) is an
endogenous choice in our model while the usual global game approach would assume noisy observation of an
exogenous parameter chosen randomly by nature. Since γ is a strategic choice (made before the prisoners
act), prisoners could infer γ correctly in equilibrium despite the noisy observation if the warden did not
“tremble”. Consequently, prisoners would have common knowledge of γ despite the noise.

21The ceiling dxe is the lowest integer above x, i.e. dxe = min{n : n ∈ N and n > x}.
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simply choosing γ̃ = θ∗. This gives us the following outcome for our second model.

Result 2. (Transparency model) The equilibrium outcome selected by the global game

approach is the following: The warden chooses a guard level equal to θ∗ and every prisoner

plays n.

B.3. Comparison of the models

The prisoners are indifferent between all models: In the transparency model and the first

benchmark, they did not revolt and therefore had a payoff of zero. In the panopticon and

the second benchmark, prisoners were indifferent between revolting and not revolting as they

played a mixed strategy. Hence, their expected utility was again zero as this is the payoff

from playing n. The warden optimal model will therefore also be the welfare optimal model.

Clearly, the two benchmark models are worst for the warden: His payoff is −N which is the

cost of preventing a breakout for sure by employing an abundance of guards. If he prevents

communication, he can achieve the same outcome at cost θ∗ ≤ N . In the panopticon model,

he is also weakly better off than in the benchmark, since he always has the option of setting

a guard level of N and ensuring a payoff of −N . He is indeed indifferent to doing so if

the equilibrium in which the warden mixes over N − 1 and N is the only existing mixed

equilibrium. If other equilibria exist, the warden will be strictly better off in those than in

the benchmark model.

The interesting comparison is between the transparency model and the panopticon. Which

of these two models is warden optimal depends on the parameter values of the model. In gen-

eral, however, we have shown in section 3.2, the panopticon model has a unique equilibrium

for large N in which the warden’s payoff is bounded from below by a constant.

In the transparency model, the warden payoff is given by −θ∗ = −
⌈
bN
q+b

⌉
, which falls

linearly in N and therefore becomes very negative for large N . We can therefore always find

an N such that the panopticon is optimal for all N > N . Figure B shows a comparison of

warden payoff (i.e. welfare) of the different information structures.

Why is the panopticon superior to the transparency model from the warden’s point of

view? The information about γ that the prisoners receive under transparency has two func-

tions: It deters them from attacking if γ is high enough – but it also correlates their beliefs

to some degree (even without creating common knowledge) which allows them to eventually

correlate their behavior. The main insight of the panopticon model is that the warden gains

from the inability of prisoners to be unpredictable as a group; this advantage comes precisely

from the impossibility of correlating their behavior.

Besides this central result for large groups, we present two other comparison results for

small N . In this case, either the warden’s or the prisoners’ payoffs sometimes allow us to say
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which information structure is optimal.

Proposition 1. (Varying B) Take q, b, N as given. The transparency model is warden

optimal if θ∗ = 1. If θ∗ > 1, then there exists a B̄ such that for all B ≥ B̄ the warden’s

payoff in the unique equilibrium of the panopticon model is higher than in the transparency

model. The warden mixes over the guard levels zero and one in this unique equilibrium.

Put differently, if the disutility of a breakout is relatively high compared to the cost of the

guards, the panopticon is warden optimal unless a guard level of 1 can completely deter revolts

in the transparency model. Given that revolting is dominant for any guard level strictly below

one, θ∗ = 1 has to be viewed as a special case. Indeed θ∗ = dbN/(q + b)e equals 1 only if

the disutility of an unsuccessful revolt is N − 1 times as high as the utility of a successful

breakout which seems somewhat implausible in the applications we have in mind. Hence,

the panopticon is – with a small caveat – warden optimal if warden incentives dominate.

This might be somewhat surprising as the breakout probability in the panopticon is strictly

greater than zero while the breakout probability in the transparency model is zero. There

are two reasons explaining why cost savings compared to the transparency model are sizable

if θ∗ > 1. First, the warden mixes between guard levels of zero and one in the panopticon

if B is high. Consequently, a substantial number of guards can be saved compared to the

transparency model. Second, the breakout probability in the panopticon – though not zero –

is very small. The second follows readily from the first: Given that the warden really dislikes

breakouts (high B), he will only be willing to mix between zero and one if the probability of

revolt is very small. The reason why no other equilibrium exists is the following. Given that

B is very high, the warden is only willing to use γ1 < N guards if the probability of a revolt

is very small. But this implies that for each prisoner it is unlikely that other prisoners revolt.

Consequently, each prisoner strictly prefers not to revolt unless γ1 = 0.

Next, consider the prisoners’ incentives.

Proposition 2. (Varying b/q) Take N and B as given. For b/q high enough, the warden

payoff equals −N in all models. Furthermore,

• Suppose B
N−1
N > N : Then, for b/q ∈ (N − 1, B

N−1
N − 1), the warden’s payoff in every

equilibrium of the panopticon model is higher than in the equilibrium of the transparency

model.

• Suppose N > B
N−1
N : Then, for b/q ∈ (B

N−1
N − 1, N − 1), there exists an equilibrium

in the panopticon model in which the warden’s equilibrium payoff is lower than in the

transparency model.
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If the prisoners have very strong incentives to break out, the payoff of all models coincides:

The warden chooses N guards in the benchmark 1a and transparency model, mixes between

N and N − 1 guards in the panopticon and between N and 0 in benchmark 1b. Hence,

the warden payoff is −N . For high (but not excessively high) incentives to break out, the

comparison between panopticon and transparency model is hampered by the multiplicity of

equilibria in the panopticon model. Depending on parameter values, either all (!) equilibria in

the panopticon yield a higher warden payoff than the transparency model or the transparency

model does better than some equilibria in the panopticon.

B.4. Why we compare information structures but don’t do information design

The warden in our model benefits from the fact that his choice is unobservable, and would

therefore want to keep his choice secret if he could. Since prisoners almost always get payoff

0, secrecy is also efficient. One could therefore think that an information designer should

choose the information structure in which the warden’s choice remains unobservable. How-

ever, we diverge from the literature on information design by not solving for the warden

optimal information structure. The standard method for doing so would be to employ a

revelation principle for information design which permits the formulation of the problem as a

maximization over the prisoner’s strategies subject to obedience constraints (c.f. Bergemann

and Morris, 2016, 2017).

In our model, if prisoners can perfectly observe the guard level, there exists an equilibrium

in which the warden employs one guard and no one revolts. Equilibrium strategies will clearly

satisfy the aforementioned obedience constraints as no one has an incentive to deviate. But

this equilibrium illustrates a problem with the information design approach: Of course, the

subgame in which the prisoners have to act (after observing the guard level) has another

Nash equilibrium in which everyone revolts. The common equilibrium selection method for

coordination games, i.e. the global game approach, would select the latter equilibrium and

not the warden’s preferred equilibrium in which no one revolts. The usual information design

approach, however, implicitly assumes that the warden can determine which equilibrium is

played if there are multiple equilibria in the prisoners’ subgame.22 But since the coordination

problem between prisoners and its interaction with the warden’s choice is at the core of our

paper, we find it intellectually unsatisfying to not only ignore this coordination problem, but

solve it to the warden’s advantage. Our main result is, instead, built on Nash equilibrium

uniqueness and hence does not require a choice between different equilibria.

22A similar problem is, of course, well known in the mechanism design literature where the same assumption
is implicitly made when using the revelation principle.
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Supplementary Material
for interested readers – not intended for publication

Proofs for results from the appendix

Proof of lemma 5: The proof is in three steps.

Strategic complementarity: A player finds revolting more attractive if other players are

more likely to play revolt. A prisoner’s strategy maps from signals into actions. If there

are strategy profiles s and s′ such that for every signal for which a player j 6= i plays

revolt under s he will also play revolt in s′, then playing revolt is relatively more attractive

for player i given s′−i compared to s−i: Let GN−1(γ − 1) be the probability that γ − 1

or less of the other N − 1 prisoners revolt (given their strategies and i’s signal). Define

∆(γ) = −qGN−1(γ − 1) + b(1−GN−1(γ − 1)) as the utility of revolting minus the utility of

not revolting for a given guard level γ. GN−1(γ − 1) is weakly lower under s′−i than under

s−i and therefore ∆(γ) is higher. That is, for a given γ revolting is more attractive. Since

this is true for any given γ, it is also true in expectation.

Suppose everyone follows a cutoff strategy with cutoff θ. For a given δ > 0, there exists

an ε̄ > 0 such that the utility of revolting for a prisoner with signal θ is higher (lower)

than the utility from not revolting if θ ≤ θ∗− δ (θ ≥ θ∗+ δ). The probability that a player

observing himself the cutoff signal θ assigns to the event “exactly k other players receive a

signal below θ” is

gN−1(k) =

∫ θ+ε

θ−ε

(
N − 1

k

)(
γ − θ + ε

2ε

)k (
1− γ − θ + ε

2ε

)N−1−k
φ(γ)

Φ(θ + ε)− Φ(θ − ε)
dγ.

We will now derive a convenient approximation for gN−1(k). Note that for ε small the

term φ(γ)/(Φ(θ + ε) − Φ(θ − ε)) is approximately constant (and equal to 1/(2ε)) as φ is

continuous and has a bounded first derivative. More precisely, fix θ and define φmax(ε) =

maxγ∈[θ−ε,θ+ε] φ(γ) and φmin(ε) = minγ∈[θ−ε,θ+ε] φ(γ). Then gN−1(k) and its approximation

(where the average 1/(2ε) is used instead of φ(γ)/(Φ(θ + ε) − Φ(θ − ε))) are necessarily

between the two values

ḡ(ε) =

∫ θ+ε

θ−ε

(
N − 1

k

)(
γ − θ + ε

2ε

)k (
1− γ − θ + ε

2ε

)N−1−k
φmax(ε)

Φ(θ + ε)− Φ(θ − ε)
dγ,

g(ε) =

∫ θ+ε

θ−ε

(
N − 1

k

)(
γ − θ + ε

2ε

)k (
1− γ − θ + ε

2ε

)N−1−k
φmin(ε)

Φ(θ + ε)− Φ(θ − ε)
dγ
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as the integrand is non-negative for all γ in the integration range. By showing that limε→0 ḡ(ε)−
g(ε) = 0, we show that the approximation of g becomes arbitrarily close to g for ε small

enough:

ḡ(ε)− g(ε) =

∫ θ+ε

θ−ε

(
N − 1

k

)(
γ − θ + ε

2ε

)k (
1− γ − θ + ε

2ε

)N−1−k
φmax(ε)− φmin(ε)

Φ(θ + ε)− Φ(θ − ε)
dγ

≤
(
N − 1

k

)∫ θ+ε

θ−ε

φmax(ε)− φmin(ε)

Φ(θ + ε)− Φ(θ − ε)
dγ =

(
N − 1

k

)
2ε(φmax(ε)− φmin(ε))

Φ(θ + ε)− Φ(θ − ε)
.

From L’Hopital’s rule and the fact that limε→0 φ
max(ε) = limε→0 φ

min(ε) = φ(θ), it follows

that the last term converges to zero as ε → 0. Therefore, the approximation of gN−1(k)

converges to gN−1(k) as ε→ 0. Hence, the approximation is arbitrarily exact for ε sufficiently

small (and is totally exact for ε = 0). We will use this result later.

Using the approximation we get

gN−1(k) ≈
(
N − 1

k

)∫ θ+ε

θ−ε

1

2ε

(
γ − θ + ε

2ε

)k (
1− γ − θ + ε

2ε

)N−1−k
dγ

=

(
N − 1

k

)∫ θ+ε

θ−ε

N − 1− k
k + 1

(
γ − θ + ε

2ε

)k+1
1

2ε

(
1− γ − θ + ε

2ε

)N−2−k
dγ

=

(
N − 1

k + 1

)∫ θ+ε

θ−ε

(
γ − θ + ε

2ε

)k+1
1

2ε

(
1− γ − θ + ε

2ε

)N−2−k
dγ

where the step from the first to the second line uses integration by parts (with [(γ − θ +

ε)/(2ε)]k/(2ε) as “first part” and [1 − (γ − θ + ε)/(2ε)]N−1−k) as “second part”). Using

integration by parts for N − 1− k times gives

gN−1(k) ≈
∫ θ+ε

θ−ε

(
γ − θ + ε

2ε

)N−1
1

2ε
dγ =

[
1

N

(
γ − θ + ε

2ε

)N]θ+ε
θ−ε

=
1

N
.

Hence, we have obtained that a player receiving the cutoff signal has (approximately) uniform

beliefs over the number of players that have received a signal lower than him.

Now we want to consider the expected utility difference between revolting and not revolt-

ing of a player receiving cutoff signal θ. If there is no integerm ∈ N such that θ−ε ≤ m ≤ θ+ε,

then this utility difference equals b− (q + b)bθc/N because a breakout cannot succeed if less

than bθc other prisoners play revolt.23 Given the uniform beliefs derived above, the proba-

bility that less than bθc players play revolt is bθc/N .

23Recall that bxc = max{n : n ∈ N and n ≤ x}, i.e. bxc is the highest integer below x.
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If there is an integer m ∈ [θ − ε, θ + ε], then the expected utility difference is

b− (q + b)

[
(θ + ε−m)

2ε

(m+ 1)

N
+

(
1− θ + ε−m

2ε

)
m

N

]
.

Viewed as a function of θ, the expected utility difference is, therefore, flat on intervals (θ1, θ2)

such that bθ1 − εc = bθ2 + εc and strictly decreasing in an ε-ball around each integer. As

the utility difference is continuous in θ and as it is strictly positive (negative) for θ < 1 − ε
(for θ > N), there is a unique θ at which the expected utility difference is zero unless the

equation b− (q + b)x/N = 0 is solved by an integer x, i.e. unless bN/(q + b) ∈ N, which we

ruled out by assumption.24 As bN/(q+b) ∈ N is clearly not true for generic parameter values

(q, b,N), there exists a unique θ at which the expected utility difference is zero for generic

parameter values. In the limit as ε = 0, we then have – for generic parameter values – that

(i) the expected utility difference is strictly positive for θ < θ∗ and (ii) the expected utility

difference is strictly negative for θ > θ∗. Note that (in the limit ε → 0) the expected utility

difference viewed as a function of θ is discontinuous at θ∗.

The results of the previous paragraph were derived using the approximation of gN−1(k).

Now we relax the use of the approximation to obtain the statement we want to show. Take

any θ < θ∗. As the approximation of gN−1(k) converges to gN−1(k), one can find an ε̄(θ) > 0

such that the expected utility difference is strictly positive for θ for all ε ≤ ε̄(θ) (let ε̄(θ) be

the supremum of all such noise level). Similarly, for each θ > θ∗ an ε̄(θ) can be found such

that the expected utility difference at θ is strictly negative for each ε ≤ ε̄(θ). Note that ε̄(θ)

is continuous in θ on [0, θ∗ − δ] for any given δ > 0: Take ε < ε̄(θ′) as given. Since beliefs

– i.e. gN−1(k) – change continuously in θ, the expected utility difference is positive not only

for θ′ but for all θ in some open neighborhood around θ′ (given ε). Consequently, ε < ε̄(θ)

for every θ in this open neighborhood. A similar argument shows that ε̄(θ) is continuous on

[θ∗ + δ,N ].

For a given δ > 0, let ε̄ = min{1/2,minθ∈[0,θ∗−δ]∪[θ∗+δ,N ] ε̄(θ)}. Note that minθ∈[0,θ∗−δ]∪[θ∗+δ,N ] ε̄(θ)

exists and is strictly greater than zero as it is the minimum over a compact set of an every-

where positive and continuous function. Since revolting is a dominant strategy for signals

below 1/2 (given that ε < 1/2) and not revolting is dominant for signals above N − 1/2

(given that ε < 1/2), the expected utility difference is automatically positive (negative) for

signals below zero (above N). This concludes the proof of the second step.

For any given δ > 0, there is an ε̄ > 0 such that a player with signal below θ∗ − δ (above

θ∗ + δ) plays revolt (not revolt) for all ε ≤ ε̄ in any equilibrium. Hence, each prisoner

24In this case, the expected utility would be zero on one of the flat parts.
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follows a cutoff strategy with cutoff θ∗ in the limit as ε → 0. We use the ε̄ determined

in step 2. Take an arbitrary equilibrium. Denote by θ1 the infimum of all signals for which

some prisoner does not play revolt for sure in this equilibrium. Such a θ1 exists because

of the dominance regions, i.e. revolting (not revolting) is a dominant action for a signal

below 1− ε̄ (above N − 1 + ε̄). Then a prisoner receiving any signal below θ1 should prefer

revolting (expected utility difference weakly positive) while there are signals above θ1 but

arbitrarily close to θ1 where the prisoner prefers not revolting (expected utility difference

weakly negative). We will now show that θ1 ≥ θ∗ − δ: Change all other players strategies

such that every player does not revolt if and only if he receives a signal above θ1. By the

first step (supermodularity) and the definition of θ1, this will make revolting less attractive

(decrease the expected utility difference). Hence, a player receiving signal θ1 will (given that

all players use a cutoff strategy with cutoff θ1) prefer not revolting to revolting. Therefore,

by the second step, θ1 ≥ θ∗ − δ.
Similarly, let θ2 be the supremum of all signals such that some player plays revolt (with

non-zero probability), i.e. for all signals above θ2 all players prefer not revolting but for some

signals below and arbitrary close to θ2 player i prefers revolting and change the strategies of

all other players to cutoff strategies with cutoff θ2. Player i will then prefer revolting when

receiving signal θ2 (first step). The second step then implies that θ2 ≤ θ∗ + δ.

In the limit as δ, ε→ 0, we clearly get θ1 = θ2 = θ∗.

Lemma S1. For sufficiently high b or low q, only the equilibrium in which the warden mixes

over N and N − 1 exists. For sufficiently high B, the equilibrium in which the warden mixes

between 0 and 1 is the only mixed equilibrium.

Proof: As pointed out in the main text, equilibrium p and γ1 are determined simultane-

ously by (2) and (1) as the warden’s own mixing probability does not play a role in these

conditions. Given these two values, (3) will determine the optimal mixing probability of the

warden. This insight shows that b and q will not affect the optimal γ1 or the equilibrium

revolt probability p because these parameters do not play a role in (2) and (1). Note that

∆ is linearly increasing in b and linearly decreasing in q. Both variables are not part of the

warden’s maximization problem. Hence, changes in b and q do not affect the equilibrium

mixing probability p for a given support of the warden. This implies that for b high enough

(q low enough) ∆(γ) is positive for all γ ∈ {0, . . . , N −1}. Hence, only the equilibrium where

the warden mixes between N − 1 and N exists if b is sufficiently high (or q sufficiently low).

The payoff of the warden when using N guards is −N while his payoff when using γ < N

guards is −B(1 − G(γ)) − γ. In any mixed equilibrium, the warden has to play an action

γ < N with positive probability and therefore he must prefer this action (weakly) to the
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action γ = N . For B → ∞, this can only be true if limB→∞p = 0. Put differently, the

equilibrium mixing probability of the prisoner p in a mixed equilibrium becomes arbitrarily

small as B increases. Note that very small p imply high GN−1(γ−1) for γ ≥ 1. Consequently,

∆(γ) is negative for sufficiently low p for all γ ≥ 1. As a mixed equilibrium in which the

warden mixes over γ1 and γ1 + 1 can only exist if ∆(γ1) > 0 > ∆(γ1 + 1), it follows that for

sufficiently high B the mixed equilibrium in which the warden mixes over 0 and 1 is the only

mixed equilibrium that exists.

Proof of proposition 1: Lemma S1 establishes that for B high enough the only mixed

equilibrium is the one where the warden mixes over 0 and 1. The proof of the lemma also

establishes that ∆(γ) < 0 for γ ≥ 1 if B is sufficiently high. Consequently, also no semi-

mixed equilibrium exists for B high enough. Let B̂ be such that only the mixed equilibrium

in which the warden mixes over 0 and 1 exists for any B ≥ B̂. For the rest of the proof,

consider only B ≥ B̂.

In this mixed equilibrium the warden is indifferent between 0 and 1 which means Bg(1) =

1 or equivalently N(1 − p)N−1p = 1/B. Therefore, limB→∞ p(B) = 0 where p(B) is the

prisoners’ equilibrium probability of playing r when the warden’s utility is B. Since the

warden is indifferent between playing 0 and 1 in equilibrium, his equilibrium payoff equals

π(0) = −(1−(1−p)N)B. Plugging in the indifference condition N(1−p)N−1p = 1/B derived

above yields the warden’s equilibrium payoff

π∗ =
(1− p)N − 1

N(1− p)N−1p
.

Applying L’Hôpital’s rule, gives limp→0 π
∗ = −1. As we established above, p approaches 0

when B → ∞. Consequently, the warden’s payoff in the mixed equilibrium approaches −1

as B →∞. Furthermore,

∂π∗

∂p
=
−N2(1− p)2N−2p− ((1− p)N − 1)(−N(N − 1)(1− p)N−2p+N(1− p)N−1)

N2(1− p)2N−2p2

=
1−Np− (1− p)N

N(1− p)Np2
.

Using L’Hôpital’s rule, gives ∂π∗/∂p|p=0 = −(N − 1)/2 < 0. Hence, the warden’s payoff

approaches −1 from below as B → ∞ and the warden’s payoff in the equilibrium where he

mixes over 0 and 1 is bounded from above by −1. This proves the proposition because in the

transparency model the warden’s equilibrium payoff is −θ∗ for any value of B.

Proof of proposition 2: It was shown in lemma S1 that for b/q high enough, the unique

equilibrium in the panopticon model is a mixed equilibrium in which the warden mixes over
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N−1 and N and his payoff is −N . A similar result holds for the transparency model: θ∗ = N

if and only if b/(q+ b) > (N −1)/N or equivalently if (b/q) > N −1. Clearly, θ∗ = N implies

that the warden’s equilibrium payoff is −N . This establishes the result that for b/q high

enough all models lead to a warden payoff of −N .

Now consider the panopticon. In an equilibrium in which the warden mixes over N − 1

and N , he has to be indifferent between these two options which implies 1 = BpN , i.e. the

mixing probability of the prisoner has to be p = (1/B)1/N in such an equilibrium. To have

such an equilibrium, the condition ∆(N − 1) > 0 has to be satisfied. Given p = (1/B)1/N ,

this condition becomes −q
(
1− (1/B)(N−1)/N

)
+ b(1/B)(N−1)/N > 0. This can be rewritten

as b/q > B(N−1)/N − 1.

If B(N−1)/N−1 > b/q > N−1, then the warden’s payoff in the transparency model is −N .

In the panopticon, however, the equilibrium in which the warden mixes between N and N−1

does not exist which means the warden plays N with zero probability in any equilibrium of

this game. As the equilibrium guard levels are then strictly preferred to a guard level of N

(which would guarantee payoff −N), it follows that the warden’s payoff in the no information

game is strictly larger than −N .

If B(N−1)/N − 1 < b/q < N − 1, the no information game has an equilibrium in which the

warden mixes between N − 1 and N and therefore his expected payoff in this equilibrium is

−N . In the transparency model, θ∗ < N and therefore the warden’s equilibrium payoff is

strictly above −N .

Extension: Uncertain punishment

Here we consider a variation of the model in which a prisoner’s payoff when revolting un-

successfully is −q − ργ/N < 0 where q ≥ 0 is an effort cost and ρ ≥ 0 is a punishment

that happens with probability γ/N . It will become apparent that the the specific linear form

chosen here is irrelevant for the analysis, i.e. we could just as well use −q − h(γ,N) where

h ≥ 0 increases in its first and decreases in its second argument. Apart from this change

in payoff, the model is the same as in the main text. Note that this setup falls under the

generalization of section 4.1. The setup still maintains strategic complementarity between

prisoners and therefore even the restriction to prisoner symmetric equilibria section 4.1 is

without loss of generality in this extension. In the following, we therefore concentrate on

extending the comparison in appendix B.

Note that the arguments in the benchmark model go through without change.

In the transparency model, lemma 5 holds with a slightly redefined threshold θ∗. Let θ∗

be the unique θ such that
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• either θ 6∈ N and

b−
(
q + b+

θ

N
ρ

)
bθc
N

• or θ ∈ N and

0 ≥ b−
(
q + b+

θ

N
ρ

)
θ

N

0 ≤ b−
(
q + b+

θ

N
ρ

)
θ − 1

N
.

The proof of lemma 5 has to be adjusted only at very few instances: In the first step,

∆(γ) = b−
(
q + b+

θ

N
ρ

)
GN−1(γ − 1)

and everything goes through accordingly.

In the second step, the derivation of the approximation and the resulting Laplacian beliefs

remains unaffected. The expected utility difference between revolting and not revolting if

there does not exist an m ∈ N such that θ − ε ≤ m ≤ θ + ε will now be

b−
(
q + b+

θ

N
ρ

)
bθc
N
.

If such an m exists, the expected utility difference is

b−
(
q + b+

(
m

2
+
θ + ε

2

)
ρ

N

)
θ + ε−m

2ε

m+ 1

N
−
(
q + b+

(
m

2
+
θ − ε

2

)
ρ

N

)(
1− θ + ε−m

2ε

)
m

N
.

Note that this expected utility difference is strictly decreasing in θ if ρ > 0. As revolting is

dominant for θ < 1 − ε and not revolting is dominant for θ > N + ε, there is a unique θ at

which the expected utility difference is zero. In the limit ε→ 0, we obtain that the expected

utility difference is strictly positive for every θ < θ∗ and strictly negative for every θ > θ∗.

Given this, the remaining parts of the proof of lemma 5 apply without change.

In the panopticon model, the indifference condition of the prisoner (3) has to be rewritten

as

E
[
b−GN−1(γ − 1)

(
b+ q + ρ

γ

N

)]
= 0.

Lemma 2 remains valid because it uses only the warden’s problem which was not changed.

The proof of lemma S1 uses the prisoners’ indifference condition without using the specific

form of the prisoner payoff. Consequently, the proof goes through without change and the

lemma remains valid. As the setup falls under the generalization in section 4.1, also theorem
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1 remains valid.

The most interesting comparison of the models is the result for large N in section B.3.

The arguments do not use the specific form of the prisoners’ indifference condition and

consequently goes through without change. Hence, all the results for large N remain valid.

Extension: Stochastic breakout

The probability of a breakout was 1 in the main text whenever the number of revolting

prisoners exceeded γ and zero otherwise. It is straightforward to extend the model to a

framework in which the probability of a breakout is stochastic. In this section, we change

the setup in the following way: If m of the N prisoners revolt and the guard level is γ, then

the probability of a breakout is

β1m>γ + (1− β)
m

N

where β ∈ (0, 1) and 1 is the indicator function.25 The model of the main text emerges for

β = 1. In this setup, it is necessary to adjust assumption 1 which implies that the warden

would prevent a breakout if he knew that all prisoners revolt with probability one. In the

setup with stochastic breakouts, the assumption is βB ≥ N + 1. We will need additional

parameter assumptions in order to ensure that prisoners have dominant strategies if the

warden chose zero or N guards. That is, we make the assumption

β >
b

q + b
> (1− β)

N − 1

N

which (after rearrangement) states that it is dominant to revolt for a given prisoner if γ = 0

and it is dominant not to revolt if γ = N . With these assumptions the conditions of the

generalization in section 4.1 are met and the results there apply. Furthermore, the strategic

complementarity between prisoners’ actions still holds in this setup and therefore even the

restriction to prisoner symmetric equilibria is without loss of generality. We will now turn to

the other information structures as in section B.

In the transparency model, θ∗ changes to

θ∗ =

⌈
N

β

(
b

q + b
− 1− β

2

)⌉
.

With this θ∗, lemma 5 applies to the new setup. To see this, note that the first part of the

25In our prison example, one could think of this story: Fleeing prisoners run into the guards with probability
β. In this case, they succeed only if they outnumber the guards. If prisoners find a way out where there
are no guards (probability 1− β), they have to overcome obstacles like walls/locks/fences etc. and the more
prisoners participate, the more likely it is that they will manage.
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proof (strategic complementarity) still goes through. In the second part, the utility difference

between revolting and not revolting if there is no integer k ∈ N such that θε ≤ k ≤ θ + ε

is now b − (q + b)(βbθc/N + (1 − β)(N − 1)/(2N)). If there is an integer k ∈ N such that

θε ≤ k ≤ θ + ε, then the expected utility difference becomes

b− (q + b)β

[
(θ + ε− k)

2ε

(k + 1)

N
+

(
1− θ + ε− k

2ε

)
k

N

]
− (q + b)(1− β)

N − 1

2N
.

Everything else in the proof of lemma 5 goes through without change. Note that by the

parameter assumption made above θ∗ is still linearly increasing in N .

In the panopticon, the warden’s payoff maximization (1) becomes

max
γ∈{0,1,...,N}

−(1−G(γ))βB − γ − β
∑N−1

k=0 kg(k)

N
B.

Note that this maximization problem differs from the one in the main text only by a term

which is constant in γ. Hence, the warden’s maximization problem does essentially not

change. The prisoners’ indifference condition (3) has to be rewritten as

Eγ

[
b−

(
βGN−1(γ − 1) + (1− β) ∗

(
1− 1 +

∑N−1
k=0 kgN−1(k)

N

))
(b+ q)

]
= 0.

The proof of lemma S1 uses the prisoners’ indifference condition without using the specific

form of the prisoner payoff. Consequently, the proofs go through without change and the

lemma remains valid.

The payoff comparison between transparency model and panopticon is also unaffected:

The payoff of the transparency model is linearly decreasing in N while the panopticon pay-

off is still bounded from below. Hence, the panopticon leads to a higher payoff than the

transparency model for large N .

Extension: Heterogeneous attackers

In the model of the paper, all “prisoners” are alike in the sense that they share the same

payoff function. A generalization to arbitrarily heterogeneous prisoners leads to an intractable

model since the support of the warden strategy may contain more than two elements (and

his payoff function might have several local optima). Also note the global game refinement

used in the transparency model of appendix B is no longer able to deliver a clear cut (and

noise independent) prediction, see Carlsson (1989), Frankel et al. (2003) or Corsetti et al.

(2004). While a full generalization is impossible for these reasons the simple extension below
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proves to be tractable.

Think of the model’s interpretation in terms of speculators who can attack a currency peg.

Suppose there are K types of attackers who differ in the size of their budget. In particular,

type k ∈ 1, . . . , K has k units of money to speculate with. For simplicity, assume that a

speculator will always either use his complete budget to attack or he will not attack at all.

The benefit of a successful attack is then b ∗ k. The payoff of not attacking is normalized to

zero as in the paper. The payoff from an unsuccessful attack is interpreted as a transaction

cost. We assume that there are scale economies in speculating. That is, the transaction

cost per unit is strictly decreasing in the budget size. More technically, qk ∈ [qk−1,
k
k−1qk−1)

for k > 1. The proportion of each type in the population is common knowledge. When we

check our result in theorem 1 we will interpret large N as multiplying the number of type k

attackers by a large natural number. That is, we increase the number of attackers but keep

the proportion of each type in the population fixed.

The main purpose of the extension is to (i) explain why a version of theorem 1 still holds

in this setup and (ii) extend the comparison of information structures in section B in the

sense of showing that the defender prefers the panopticon to the transparency model if N

is large. For this, it is unnecessary to derive an equilibrium in the transparency model. It

is sufficient to provide an upper bound on the warden’s expected payoff in any equilibrium

of the transparency model and show that – for large N – this upper bound is below the

panopticon payoff. This is exactly what we will do. For the transparency model we can

derive a weaker version of lemma 5 where NK is the number of attackers of type K:

Lemma S2. Let ε′ > 0 and NK > 1. Assume that bNK/(q + b) 6∈ N and define

θ∗K =

⌈
bNK

q + b

⌉
.

Then for any δ > 0, there exists an ε̄ > 0 such that for all ε ≤ ε̄, a player of type K receiving

a signal below θ∗K − δ will play r.

The lemma states that type K attackers will attack whenever receiving a signal below

θ∗− δ where δ can be chosen arbitrarily small. That is, in the limit as ε→ 0 type K players

will attack whenever receiving a signal below θ∗K .

The proof of the lemma is equivalent to the proof of lemma 5 with some small modifications

sketched below: Suppose that all types but type K will play n for any signal they get. If

we can show that even under this absurd supposition a type K attacker will play attack

whenever he receives a signal below θ∗K − δ, then – by strategic complementarity – he will

also attack if the other types play any other strategy (and he receives a signal below θ∗K − δ).
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If, however, we focus on the case where all types apart from type K play n for sure, then

we basically have the model of the paper where all relevant attackers are homogeneous of

type K. The second step of the proof of lemma 5 gives us the following result: Suppose all

type Ks follow a cutoff strategy with cutoff θ while all other types play n for sure for any

signal. For a given δ > 0, there exists an ε̄ such that the utility of revolting for an attacker

of type K with signal θ is higher than the utility from not attacking if θ ≤ θ∗K − δ. The proof

of this statement is equivalent to the proof in the main paper. The third part of the proof

is analogous and shows that a type K will attack whenever his signal is below θ∗K − δ. By

strategic complementarity this is also true if the other types choose to attack as well after

some signals. But this implies that the defender has to use currency reserves of at least θ∗K to

prevent an attack. As the defender wants to prevent an attack by assumption 1, the currency

reserves will be above θ∗K in every equilibrium. Note that θ∗K is linearly increasing in NK

which implies that the defenders equilibrium payoff is arbitrarily low for N (and therefore

NK) sufficiently high.

Now turn to the panopticon, i.e. the model of the main text. Consider first the game

where there are only NK attackers of type K and no attackers of other types. In this case,

the analysis of the paper applies but has to be rescaled by K. For example, the defender

will mix only over multiples of K instead of mixing over integers. If NK is sufficiently large,

there will be a unique equilibrium in which the defender mixes over 0 and K; see theorem

1. Following the proof of theorem 1, the expected payoff of the defender is bounded from

below in this equilibrium (by −αK). Now add one attacker of type k < K. We claim that

for NK high enough the best response for this type k is to not attack. To see this note

that type K attackers are indifferent between attacking and not attacking in the equilibrium

with only type Ks. All we have to show is that a type k < K has a lower expected payoff

of attacking than a type K (given the strategies of the type K attackers). This expected

payoff equals (1 − GNK (0))kb − qkGNK (0) while the indifference condition for the type K

attackers is (1 − GNK−1(0))Kb − qKGNK−1(0) = 0. As qK < qkK/k by assumption, the

indifference conditions implies (1 − GNK−1(0))kb − qkGNK−1(0) < 0. The proof of theorem

1 shows that both GNK (0) and GNK−1(0) converge to 1 as NK grows large. Therefore,

(1 − GNK (0))kb − qkGNK (0) < 0 for NK sufficiently large which means that indeed type

k finds it optimal to not attack. But this implies that in the game with NK type K and

one type k < K there is an equilibrium in which the defender and the type K attackers

behave as in the unique equilibrium in which only type K attackers are present and the type

k attacker does not attack with probability 1 (for NK large enough). Adding more type

k < K attackers (also with different k′ < K) does not change this result and we therefore

get that the panopticon game has the following equilibrium for N large: defender and type
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K attackers use the same strategies as in the game in which only type K attackers were

present; all other attackers do not attack with probability 1. The defender’s expected payoff

is the same as in the equilibrium with only NK type K attackers and is therefore bounded

from below. This establishes that defender payoff is higher in the panopticon than in the

transparency model for N sufficiently large.

Note that the central bank will use currency reserves of size K with positive probability in

the equilibrium of the panopticon model. If some investors have a lot of money, i.e. K is big,

then this implies that the central bank might have substantial reserves in equilibrium (with

positive probability). While this differs somewhat from the model in the paper the main

point remains valid: if the number of attackers is large, the defender prevents successful

attacks with modest reserves almost surely and the panopticon leads to a higher payoff than

the transparency model.

Lower bound of the central binomial coefficient – Proof

We will show the equivalent
(
2n
n

)
≥ 22n/(2

√
n) as it is notationally more convenient. The

first step is to see that(
2n

n

)
1

22n
=

1

22n

(2n)!

n!n!

=
1

2n
(2n)!

n! 2nn!

=
1

2n
(2n− 1)(2n− 3)(2n− 5) . . . 1

n!

=
1

2n−1
1

2n

(2n− 1)(2n− 3)(2n− 5) ∗ · · · ∗ 3

(n− 1)(n− 2) ∗ · · · ∗ 1

=
1

2n−1
1

2n

n−1∏
j=1

2j + 1

j

=
1

2n

n−1∏
j=1

(
1 +

1

2j

)
.

The second step is to get a lower bound on the square of the product:

n−1∏
j=1

(
1 +

1

2j

)2

=
n−1∏
j=1

(
1 +

1

j
+

1

4j2

)

≥
n−1∏
j=1

(
1 +

1

j

)
= n.
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Where the last equality can be easily shown by induction.26 Taking the first two steps

together shows that

((
2n

n

)
1

22n

)2

=
1

(2n)2

n−1∏
j=1

(
1 +

1

2j

)2

≥ 1

4n2
n =

1

4n
.

Taking square roots on both sides gives(
2n

n

)
1

22n
≥ 1

2
√
n

which is the desired result.

26Clearly, it holds for n = 2. For higher n, we get
∏n−1
j=1

(
1 + 1

j

)
=
(

1 + 1
n−1

)∏n−2
j=1

(
1 + 1

j

)
=(

1 + 1
n−1

)
(n− 1) = n where the second equality uses the induction hypothesis.

13
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