## How Jeremy Bentham would defend against coordinated attacks

Ole Jann\* and Christoph Schottmüller\*\*

\*University of Copenhagen → Oxford \*\*University of Copenhagen, Tilec

## Outline

- Introduction
- 2 Model
- Results
- 4 Discussion
- Conclusion
- 6 Appendix

### What do we look at?

- 1 central player ("warden")
- threat of coordinated attack by N "prisoners"
- warden
  - how much costly ressources ("guard level") to fight off possible attack?
  - what information about guard level to release in order to exploit prisoner's coordination problem? (prison design)

#### What about Bentham?

- Bentham's suggestion: Panopticon
  - no information on guard level
  - keep prisoners separate (to hamper coordination)
- Bentham's claims
  - coordination to breakout will never be achieved
  - regardless of how many/whether guard(s) are on duty
    "[...] so far from it, that a greater multitude than ever were yet lodged in one house might be inspected by a single person"
  - can be applied to everything: schools, factories, hospitals...

## Is this (related to) economics?

- Foucault: enforcement by panopticon allowed "accumulation of men" necessary for industrial take off
- add endogenous information structure to global games (Carlsson and van Damme 1993, Morris and Shin...)
  - central bank defending currency peg against speculators (Morris and Shin 1998)
  - government defending against coup d'état (Chassang and i Miquel 2009)

#### Main result

- Bentham was right if the number of prisoners is high
  - secrecy of guard level optimally exploits coordination problem
  - in equilibrium warden uses minimal guard level
  - probability of breakout is almost zero nevertheless

#### Main result

- Bentham was right if the number of prisoners is high
  - secrecy of guard level optimally exploits coordination problem
  - in equilibrium warden uses minimal guard level
  - probability of breakout is almost zero nevertheless

- rough intuition
  - "matching pennies" incentives
  - law of large number: quite precise idea of how many prisoners revolt
    - suppose many
    - employ more guards
    - no one wants to revolt...contradiction

## Model

- one warden
  - sets a guard level  $\gamma \in \Re_+$
  - payoff:
    - $\bullet$   $-B-\gamma$  if there is a break out
    - $\bullet$   $-\gamma$  if there is no break out
- N prisoners
  - actions: "revolt" (r), "not revolt" (n)
  - payoff:

|   | break out    | no break out |
|---|--------------|--------------|
| r | <i>b</i> > 0 | -q < 0       |
| n | 0            | 0            |

- ullet breakout iff strictly more than  $\gamma$  prisoners revolt
- Assumption: B ≥ N + 1 (prevent breakout under complete info)

## Information

|                      |     | Guard level observable |                |
|----------------------|-----|------------------------|----------------|
|                      |     | Yes                    | No             |
| Coordination problem | No  | (1a) Benchmark         | (1b) Benchmark |
| Coordination problem | Yes | (2) Transparency       | (3) Panopticon |

Table: The four information structures we consider.

# Transparency (guard level observed, no coordination)

- if  $\gamma \geq N$ : not revolt (dominant)
- if  $\gamma$ <1: revolt (dominant)
- if  $1 < \gamma < N$ 
  - either all revolt in subgame equilibrium
  - or none revolts in subgame equilibrium

## Transparency (guard level observed, no coordination)

- if  $\gamma \geq N$ : not revolt (dominant)
- if  $\gamma$ <1: revolt (dominant)
- if  $1 \leq \gamma < N$ 
  - either all revolt in subgame equilibrium
  - or none revolts in subgame equilibrium
- equilibrium selection as in global games
- result (roughly):
  - play r if and only if  $\gamma < \lceil bN/(q+b) \rceil$
  - warden sets  $\gamma = \lceil bN/(q+b) \rceil$

## Panopticon (guard level unobserved, no coordination) I

- only mixed strategy equilibria
- only prisoner symmetric equilibria probability p to revolt
  - number revolting prisoners: binomial distribution

#### Lemma

In equilibrium, the warden mixes between two adjacent guard levels  $\gamma_1$  and  $\gamma_1+1$  where  $\gamma_1 \in \{0, \dots, N-1\}$ .

• possibly multiple equilibria

## Panopticon (guard level unobserved, no coordination) II

• warden payoff:  $-(1 - G(\gamma))B - \gamma$  (binomial distrib. is G)



### Main Result

## Theorem (Bentham was right)

Let N be sufficiently large. Then, the warden mixes between 0 and 1 in the unique equilibrium of the panopticon model. The warden's payoff is higher in this equilibrium than in the transparency model.

In the panopticon, the probability of a breakout is arbitrarily close to zero for sufficiently high N.

## Main Result (rough intuition)

- for high N distribution of revolting prisoners G concentrated around mode pN
- $\bullet$  around mode marginal utility of  $\gamma\uparrow$  high
- $\gamma_1$  substantially above mode
- ullet probability that more than  $\gamma_1$  prisoners revolt low
- prisoner strictly prefers not to revolt

• what is different for  $\gamma_1$ =0?

## Main Result (rough intuition)

- for high N distribution of revolting prisoners G concentrated around mode pN
- $\bullet$  around mode marginal utility of  $\gamma\uparrow$  high
- $\gamma_1$  substantially above mode
- ullet probability that more than  $\gamma_1$  prisoners revolt low
- prisoner strictly prefers not to revolt

- what is different for  $\gamma_1$ =0?
  - revolt is dominant strategy if  $\gamma_1$ =0
  - 0-1 equilibrium: less coordination game but one-to-one "matching pennies"

#### Discussion

- How to save a currency peg?
  - keep your foreign currency reserves secret!
  - what about "forward guidance" and transparency?
- Minimal enforcement
  - Bentham and Foucault
  - What about massive police presence at demonstrations/football etc.?

## Robustness/Extensions

- payoff when unsuccessfully revolting might depend on guard level
  - revolutions: punishment if seen
  - say  $-q \rho \gamma / N$
  - everything goes through: behave as watched because you might be watched
- payoff of not revolting depends on whether there is a breakout
  - revolution: punishment of non revolting (everything goes through)
  - free riding: can destroy strategic complementarity (destroys results)
- some randomness in breakout probability
  - prob of breakout is  $\beta \mathbb{1}_{m>\gamma} + (1-\beta)m/N$
- attackers have different sizes

### Conclusion

- coordinated attack model where central player chooses
  - defense level
  - information about defense level
- how to exercise power through the choice of information structure
- optimal to keep defense level secret (for N large etc.)

## Benchmark (no coordination problem)

- guard level observed
  - all revolt if  $\gamma < N$
  - none revolts otherwise
  - equilibrium:  $\gamma = N$
- guard level unobserved
  - either all or none revolt
  - $\gamma$  either 0 or N
  - mixed strategy equilibrium
- equilibrium payoffs
  - warden: −N
  - prisoner: 0

## Transparency model (guard level observed, no coordination), details I

- warden chooses guard level with trembling hand  $\gamma \sim \textit{N}(\tilde{\gamma}, \varepsilon')$
- prisoner observes signal drawn from uniform distribution on  $[\gamma-\varepsilon,\gamma+\varepsilon]$

#### Lemma

Let  $\varepsilon' > 0$ . Assume that  $bN/(q+b) \not\in \mathbb{N}$  and define

$$\theta^* = \left\lceil \frac{bN}{q+b} \right\rceil.$$

Then for any  $\delta>0$ , there exists an  $\bar{\varepsilon}>0$  such that for all  $\varepsilon\leq\bar{\varepsilon}$ , a player receiving a signal below  $\theta^*-\delta$  will play r and a player receiving a signal above  $\theta^*+\delta$  will play n.

# Transparency model (guard level observed, no coordination), details II



Figure: Infection of beliefs among prisoners

#### Other results I

## Theorem (high disutility of breakout B)

Unless a single guard deters prisoners in the transparency model, the warden is better off in the panopticon if B is sufficiently large.

### Other results I

## Theorem (high disutility of breakout B)

Unless a single guard deters prisoners in the transparency model, the warden is better off in the panopticon if B is sufficiently large.

- only 0-1 equilibrium exists for high B
- any other  $\gamma_1$ :
  - ullet for B high enough,  $\gamma_1$  is only optimal if  ${\bf p}$  is very low
  - prisoners strictly prefer not to revolt

### Other results II

## Theorem (incentives to revolt b/q)

For b/q sufficiently high, the warden payoff is -N in all models.

- Suppose  $B^{\frac{N-1}{N}} > N$ : Then, for  $b/q \in (N-1, B^{\frac{N-1}{N}}-1)$ , the warden's payoff in every equilibrium of the panopticon model is higher than in the equilibrium of the transparency model.
- Suppose  $N > B^{\frac{N-1}{N}}$ : Then, for  $b/q \in (B^{\frac{N-1}{N}}-1,N-1)$ , there exists an equilibrium in the panopticon model in which the warden's equilibrium payoff is lower than in the transparency model.