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Abstract

Many optimal contracting papers use quasi-linear preferences. To exclude

stochastic mechanisms they impose a (sufficient) condition on how the curva-

ture of an agent’s objective function varies with type. We show with quasi-linear

preferences that an optimal deterministic outcome without bunching implies that

stochastic mechanisms are not optimal (without any additional assumptions).

Keywords: stochastic mechanisms, contract theory, quasi-linear preferences

JEL classification: D82, H21

∗Financial support from the Dutch National Science Foundation (VICI 453.07.003) is gratefully

acknowledged.
†Schottmüller: Department of Economics, Tilec and CentER, Tilburg University, email: christoph-

schottmueller@googlemail.com. Boone: Department of Economics, University of Tilburg, P.O. Box

90153, 5000 LE, Tilburg, The Netherlands; Tilec, CentER and CEPR, email: j.boone@uvt.nl.

1



1. Introduction

Since the introduction of adverse selection by Akerlof (1970) and Mirrlees (1971), an

extensive literature on this topic has emerged. The overwhelming majority of contri-

butions on this topic analyzes deterministic contracts although it is commonly believed

that random contracts can be efficient, see Bolton and Dewatripont (2005, ch. 2.3)

and Laffont and Martimort (2002, ch. 2.13) for textbook accounts of this. The idea is

that randomness in contracts could be used to relax incentive compatibility constraints.

However, random contracts are hardly observed in practice. Hence, there seems to be a

mismatch between theory and real world and several more or less plausible explanations

have been brought forward to explain it, see for example Arnott and Stiglitz (1988).

This paper shows that the intuition explaining why random contracts dominate de-

terministic contracts is slightly flawed. This intuition suggests that already in fairly

standard models, random contracts improve on deterministic mechanisms. The incor-

rect intuition originates from an error repeatedly made in the small literature on optimal

random contracts. We show that random contracts cannot improve upon the optimal

deterministic contract in a standard principal agent framework with quasi-linear pref-

erences. Therefore, the non-existence of random contracts in practice is less surprising

and the contributions on optimal deterministic contracts with quasi-linear preferences

are more general than previously thought.

The paper is structured as follows. The following section explains the argument in

favor of random contracts and the flaw in this reasoning. Section 3 shows that random

contracts are never optimal in a two type principal agent model. Section 4 generalizes

the result to a continuous type framework.

2. The standard intuition

To fix ideas think of a two type principal agent model. Call the types θh and θl. Under

the optimal contracting scheme the incentive compatibility constraint of one of the types,

say of θh will bind, i.e. θh is indifferent between his contract and the contract intended for

θl. The standard explanation why random contracts can be optimal is along the following

lines (see Bolton and Dewatripont (2005, ch. 2.3.2) or Laffont and Martimort (2002, ch.

2



q

t

θh

θl
principal

ql

tl

t1

t2

q1 q2

Figure 1: indifference curves through θl contract

2.13) for textbook expositions and Arnott and Stiglitz (1988) or Brito et al. (1995) for

research papers). Start from the optimal deterministic contract. Now consider giving θl a

random contract which (for simplicity) randomizes between contracts that are close to his

deterministic contract. If θh is more risk averse than θl (this boils down to an assumption

on the third derivative cqqθ in our framework below), this randomization relaxes the

binding incentive compatibility constraint. If the difference in risk aversion is big enough,

the relaxation of the incentive constraint is big enough to more than compensate for the

loss due to randomization (after all, θl is risk averse as well). Therefore, randomization

can improve upon deterministic contracts whenever the types differ sufficiently in risk

aversion.

This reasoning originates in the literature on optimal income taxation where a similar

argument is stated slightly more formal, see for example theorem 2 in Brito et al. (1995).

This argument suggests that small changes in a standard set up can make stochastic

contracts optimal. Take figure 1 as illustration. Figure 1 depicts the indifference curves

of the two types and the principal through the θl contract. The contract consists of a

transfer tl and a decision ql. Now the idea is the following: Instead of the deterministic

(ql, tl), assign θl a random contract consisting of a random mix between (q1, t1) and

(q2, t2). As both are on the same indifference curve, the utility of θl does not change.

Furthermore, one can choose the probability weights such that the expected utility of

the principal remains unaffected as well. Therefore, this random contract will improve
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on the deterministic one if and only if the incentive constraint is relaxed.

Now consider a concave transformation of the utility of θh, i.e. the utility function of

θh is no longer uh(q, t) but F (uh(q, t)) where F is an increasing and concave function.1

Note that such a transformation does not change the shape of the indifference curves of

type θh. It only changes the cardinal utility differences between contracts on different

indifference curves. The concavity of F means that θh cares less about the utility dif-

ference between (ql, tl) and (q2, t2) compared to the utility difference between (ql, tl) and

(q1, t1). By choosing F sufficiently concave, the above suggested random contract will

relax the incentive constraint for θh. To illustrate, one can think of the extreme function

F (u) = u if u < uh(ql, tl) and F (u) = uh(ql, tl) if u ≥ uh(ql, tl) which guarantees that

the incentive constraint is relaxed. By continuity, one can then also choose a strictly

increasing F that still relaxes the binding incentive constraint. The result is that for

concave enough uh functions random contracts are always optimal.

What is the flaw in this reasoning? The problem is that as soon as one transforms

uh the optimal deterministic contract changes. The reasoning above only shows that the

proposed random contract is better than the initial deterministic contract. However, the

optimal deterministic contract under the transformed utility function differs from the

initial deterministic contract.

Intuitively, the concave transformation is designed to make θh more indifferent be-

tween (ql, tl) and slightly“higher”contracts, i.e. contracts in the direction of (q2, t2). But

this implies that the standard distortion for rent extraction reasons becomes less relevant

for the principal: the θl contract is distorted away from first best to extract more rents

from the θh type. If this θh type cares less about utility differences for slightly “higher”

contracts, it is efficient to reduce the distortion. The easiest way to see this is again the

extreme F described above: If these are θh’s preferences, one can assign θl his first best

contract without affecting incentive compatibility.

A second story why stochastic mechanisms are optimal is that they help to convexify

the domain. We explain why this intuition does not carry through in our setup in the

supplementary material to this paper.

1We depart here from the quasi-linear utility setup we will analyze in the paper. This allows to see

the problem with the standard intuition more clearly.
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3. Non-optimality in a principal agent framework

Take a principal agent model. The principal has utility S(q)− t of some decision q and

transfer t where S(q) is twice differentiable, increasing and concave. The agent has utility

u(q, t, θ) = t− c(q, θ) where θ is his type which is private information. The cost function

is assumed to be twice differentiable, increasing and convex in q with c(0, θ) = 0.2 Both

principal and agent maximize expected utility.

To simplify things as much as possible, this section assumes that there are only two

types θh and θl. The principal’s prior assigns probability f i to type θi with fh = 1− f l.

To rule out countervailing incentives it is assumed that c(q, θh) < c(q, θl) for q > 0,

i.e. the high type is better absolutely. In addition, an agent has an outside option

normalized to zero, i.e. the offered contracts have to satisfy the individual rationality

constraint ti − c(qi, θi) ≥ 0. Note that we do not make assumptions on cqqθ which are

generally used to rule out the optimality of stochastic contracts (Laffont and Martimort,

2002, pp. 65/6).

Finally, the incentive compatibility constraint

ti − c(qi, θi) ≥ tj − c(qj, θi) with i, j ∈ {h, l} and i 6= j (IC)

has to be satisfied. The principal’s program is

max
tl,th,qh,ql

fh
[
S(qh)− th

]
+ f l

[
S(ql)− tl

]
s.t. : ti − c(qi, θi) ≥ 0 with i ∈ {h, l}

ti − c(qi, θi) ≥ tj − c(qj, θi) with i, j ∈ {h, l} and i 6= j

With the assumptions above the following lemma is standard in the literature. As

shown in the proof (in the appendix), this result also holds when we allow for random

contracts.

Lemma 1. Under the optimal contract scheme, the individual rationality constraint of

θl and the incentive compatibility constraint of θh are binding. The individual rationality

constraint of θh and the incentive compatibility constraint for θl are lax. Furthermore,

qh is the first best decision, i.e. qh = argmaxqS(q)− c(q, θh).

2The concavity of S and convexity of c is only used to establish existence of a deterministic first

best decision and existence of a solution to (1). As long as these two exist, also non-concave S and

non-convex c can be allowed.
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Using lemma 1, the principal’s program can be rewritten as an unconstrained opti-

mization over ql

max
ql

f l
[
S(ql)− c(ql, θl)

]
+ fh

[
S(qh∗)− c(qh∗, θh) + c(ql, θh)− c(ql, θl)

]
(1)

where qh∗ is the first best decision of type θh. Because of the incentive compatibility

constraint, this program is not necessarily concave. However, it is easy to see that the

objective is approaching −∞ for ql → ∞. Using the Weierstrass theorem (or extreme

value theorem), the maximum for this problem is well defined. The (deterministic)

maximum is achieved either at an interior point or at ql = 0.

Now turn to random decisions. Lemma 1 still applies and also implies that the

decision of θh is non-random (it is the deterministic first best decision). As utilities are

quasilinear in transfers, randomization over ti is immaterial and only randomization over

ql has to be considered. In the literature, two types of arguments are used to show the

optimality of stochastic contracts: local and non-local. We consider each in turn and

local randomizations are considered first.3

Proposition 1. Local randomizations around the optimal deterministic contract of θl

cannot be optimal.

Proof. Let q̃l denote the deterministic optimum of ql and consider a random contract

where θl is assigned q̃l− ε1 with probability p and q̃l + ε2 with probability 1− p.4 Hence,

3Readers familiar with Arnott and Stiglitz (1988, propositions 11 and 12) or Brito et al. (1995, the-

orem 3) may be surprised to see that this local argument rules out stochastic contracts. Indeed, these

authors use this type of argument to prove the optimality of stochastic contracts. In these papers, the

condition that uh has to be “concave enough” at the optimal deterministic ql implies a certain convexity

of the principal’s program at the optimal deterministic contract. Viewing the principal’s optimization

problem as a function of ql shows the tension in this argument. Optimality of the best deterministic

contract requires that the principal’s objective is locally concave at the optimal deterministic ql. Ran-

domizing with a concave objective function, however, reduces the objective value. Randomization can

only work if the objective function is locally convex.

As shown in an example in Brito et al. (1995), the conditions can nevertheless be met. Loosely speak-

ing, this happens when the variable in which the principal’s objective is convex is fixed by constraints.

Hence, the principal has no real choice and therefore his objective does not have to be locally concave at

the optimal deterministic contract. In our standard setting with quasilinear preferences this situation

cannot emerge.
4The proof holds also for more elaborate randomization schemes as long as all ql in the support are

close enough to q̃l, i.e. the randomization is local.
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the principal’s payoff is

W = f l
[
p S(q̃l − ε1)− p c(q̃l − ε1, θ

l) + (1− p)S(q̃l + ε2)− (1− p)c(q̃l + ε2, θ
l)
]

+fh
[
S(qh∗)− c(qh∗, θh) + p c(q̃l − ε1, θ

h)− p c(q̃l − ε1, θ
l)

+(1− p)c(q̃l + ε2, θ
h)− (1− p)c(q̃l + ε2, θ

l)
]
.

Denote the principal’s deterministic objective by W̃ (ql). Since the focus is on local

stochastic contracts around q̃l, we have for some q̄l1 ∈ [q̃l − ε1, q̃
l] and q̄l2 ∈ [q̃l, q̃l + ε2]:

W = W̃ (q̃l)+
dW̃ (q̃l)

dql
(−pε1+(1−p)ε2)+

1

2

(
p
d2W̃ (q̄l1)

dql2
ε2

1 + (1− p)d
2W̃ (q̄l2)

dql2
ε2

2

)
≤ W̃ (q̃l)

for ε1,2 > 0 close to 0. The inequality follows from the deterministic optimality of q̃l:

The first order condition requires dW̃/dql = 0 and d2W̃/dql
2 ≤ 0 at q close to q̃l > 0.

If q̃l = 0 is a corner solution of the deterministic problem, incentive compatibility is

equivalent to the individual rationality constraint of θh. Random ql cannot relax this

constraint.

After ruling out the optimality of local randomization around the deterministic opti-

mum, one might wonder whether non-local randomization can be optimal.

Proposition 2. No random contract can improve on the optimal deterministic contract.

Proof. Suppose that in the optimal contract ql was random and distributed accord-

ing to a probability distribution P (ql). Using lemma 1, the principal’s payoff can be

written as

W =

∫
ql
f l
[
S(ql)− c(ql, θl)

]
+ fh

[
S(qh∗)− c(qh∗, θh) + c(ql, θh)− c(ql, θl)

]
dP (ql)

=

∫
ql
W̃ (ql) dP (ql) ≤

∫
ql
W̃ (q̃l) dP (ql) = W̃ (q̃l)

where W̃ (ql) is the principal’s payoff under the deterministic contract ql. The inequality

follows from the definition of q̃l as optimal deterministic ql.

The results above are driven by two assumptions: First, the assumption of quasilinear

utility and, second, the assumption that the high type has lower costs for all levels of q.

Both assumptions are commonplace in the contract theory literature. These assumptions

lead in lemma 1 to the result that θh’s individual rationality constraint is not binding.

Without these two assumptions stochastic contracts can help to implement first best
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decisions where both types individual rationality constraints are binding. To illustrate,

assume now that θh has the following utility function:

û(q, t, θh) = log(th)− c(q, θh) (2)

The utility function of θl and the principal are the same as before. The intuition is now

that θh never wants to misrepresent as θl if tl is 0 with some probability. Therefore,

the following first best contract is implementable for θl: Assign ql∗ to θl accompanied

by transfer 2c(ql∗, θl) with probability 1/2 and 0 with probability 1/2. If the incentive

compatibility constraint of θh is binding under the optimal deterministic contract, the

stochastic contract improves strictly on the deterministic outcome.

4. Continuum of types

The previous section dealt with a two type model. This section shows that some results

carry over to a standard model where the type space is a continuum. The principal still

maximizes the expected value of S(q) − t with q ∈ R+. An agent of type θ has utility

u(q, t, θ) = t−c(q, θ) as in section 3. Principal and agent maximize expected utility. The

type space, however, is now Θ = [θ, θ̄]. The principal has a prior distribution F (θ) with

strictly positive density f(θ) over Θ. The functions S and c are assumed to be twice

continuously differentiable. Furthermore, it is assumed that a finite and positive first

best decision qfb(θ) = argmaxq≥0S(q)− c(q, θ) exists.

The outside option is normalized to 0 for all types. To rule out individual rationality

constraints binding at interior types, cθ < 0 is assumed, i.e. higher types have lower

costs. For simplicity, full participation is assumed; i.e. S(q) − c(q, θ) is high enough so

that the principal does not want to exclude some types.

By the quasi-linearity of the utility functions, randomization over t is again pointless

and is therefore not considered in the remainder. E is used to denote the expectation of

a lottery over q. As every type θ could face a different lottery over q, the expectation

over the lottery intended for type θ will be noted Eθ. The lottery over q for type θ will

be denoted by the distribution G(q, θ).

With a slight abuse of notation, denote the agent’s expected rent under the imple-
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mented mechanism by u(θ). The envelope theorem yields

uθ(θ) = Eθ[−cθ(q(θ), θ)]. (3)

By the assumption cθ < 0, the participation constraint can only bind for the lowest type

θ. Therefore, the rent function can be written as

u(θ) =

∫ θ

θ

Et[−cθ(q(t), t)] dt. (4)

The principal’s program is

max
G(q,θ)

∫ θ̄

θ

∫
q

(S(q)− c(q, θ)− u(θ)) dG(q, θ) dF (θ) (5)

s.t. : u(θ) ≥ u(θ̂) + Eθ̂[c(q, θ̂)− c(q, θ)] (IC’)

u(θ) = 0 (IR’)

where t(θ) = u(θ)−Eθc(q, θ) is used to rewrite the objective and the incentive compati-

bility constraint (IC’). Using (4), the objective can be rewritten as∫ θ̄

θ

∫
q

(S(q)− c(q, θ)) dG(q, θ)−
∫ θ

θ

∫
q

−cθ(q(t), t) dG(q, t) dt dF (θ)

=

∫ θ̄

θ

∫
q

(
S(q)− c(q, θ) +

1− F (θ)

f(θ)
cθ(q, θ)

)
dG(q, θ) dF (θ) (6)

where integration by parts is used to get from the first to the second line.

Next the relaxed deterministic solution (qrd(θ), urd(θ)) is defined: qrd is the solution

of the maximization problem

maxqS(q)− c(q, θ) +
1− F (θ)

f(θ)
cθ(q, θ) (RD)

and urd is defined by urd(θ) =
∫ θ
θ
−cθ(qrd(t), t) dt.

Proposition 3. If the relaxed deterministic solution is implementable, it is the solution

to (5); i.e. random contracts cannot improve on deterministic contracts.

Proof. The principal’s program is a maximization of (6) subject to (IC’) and (IR’).

By the definition of qrd,∫
q

(
S(q)− c(q, θ) +

1− F (θ)

f(θ)
cθ(q, θ)

)
dG(q, θ)

≤ S(qrd(θ))− c(qrd(θ), θ) +
1− F (θ)

f(θ)
cθ(q

rd(θ), θ)
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for any type θ and any distribution G(q, θ). Consequently, no distribution can lead to a

higher objective (6) than the relaxed deterministic solution. The relaxed deterministic

solution satisfies (IR’) by construction and (IC’) by assumption. Hence, it is the solution

of (5).

The following corollary states standard conditions under which qrd(θ) is implementable.

As these assumptions are often invoked in principal agent models, stochastic contracts

cannot improve the outcome (irrespective of the sign of cqqθ).

Corollary 1. The following conditions are jointly sufficient for the optimality of deter-

ministic contracts:

� single crossing: cqθ < 0

� monotone qrd, i.e. qrdθ (θ) ≥ 0 for all θ ∈ [θ, θ̄]

Proof. It is well known that under single crossing non-local incentive constraints are

not binding in deterministic solutions, see Bolton and Dewatripont (2005, ch. 2.3) for a

textbook exposition. Local first order incentive compatibility is satisfied by construction

while monotonicity of qrd ensures second order local incentive compatibility (see again

Bolton and Dewatripont (2005, ch. 2.3) for a textbook exposition).

Single crossing is a standard assumption in most of the literature. Standard properties

that lead to a monotone qrd are the monotone hazard rate assumption on the type

distribution and cqθθ ≥ 0. Most contract theory papers make these assumptions anyway

in order to be able to use the first order approach. The corollary then says that whenever

the first order approach gives the optimal deterministic contract, no stochastic contract

can improve upon the optimal deterministic contract.

5. Conclusion

The dominant view in the literature is that random contracts can improve upon deter-

ministic contracts in a wide class of problems by relaxing incentive compatibility con-

straints (unless an assumption is made on the sign of cqqθ). This paper shows that this is

not true in a principal agent setting that satisfies commonly made regularity conditions

like quasi-linear utility, single crossing and type independent participation constraints.
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Consequently, economic models are closer to reality–where random contracts are rarely

observed–than previously thought.
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Appendix

Proof of lemma 1: As this will be useful later on, lemma 1 is proven allowing

for random contracts. Since utilities are linear in transfers, randomization over ti is

immaterial and therefore neglected. Assume that the contract has qi being distributed

according to some distribution P i(qi).

The individual rationality constraint of θh is implied by the incentive compatibil-

ity constraint of θh, the assumption c(q, θl) ≥ c(q, θh) and the individual rationality

constraint of θl:

th −
∫
qh
c(qh, θh) dP h(qh) ≥ tl −

∫
ql
c(ql, θh) dP l(ql) ≥ tl −

∫
ql
c(ql, θl) dP l(ql) ≥ 0

Note that the second inequality holds strictly whenever P l does not put all probability

mass on 0.

Next it is argued that the incentive compatibility constraint (ICh) of θh has to bind.

Suppose it did not and for now concentrate on the case where qi > 0 with positive

probability for both types. The principal could then increase his payoff by marginally

decreasing th and this decrease would be feasible: It relaxes the incentive constraint of

θl. It tightens the incentive and individual rationality constraint of θh but those do not

bind and are therefore irrelevant for small enough changes of th. Hence, the incentive

constraint of θh has to bind under the optimal contract if qi > 0.

If ql = 0 with probability 1, then the same argument (decreasing th) shows that the

individual rationality constraint of θh has to be binding. As ql = 0 implies tl = 05,

the individual rationality constraint of θh is equivalent to the incentive compatibility

constraint of θh and therefore ICh binds as well.

If qh = 0 with probability 1, then either ICh binds (and that is what we want to

show) or th = 0 (otherwise reducing th is feasible and increases the principal’s payoff).

th = 0 implies then ql = 0 with probability 1 as well. Otherwise, ICh is violated because

of c(q, θl) > c(q, θh) for q > 0. Hence, both types get the same contract, again ICh binds

trivially.

Consequently, ICh will be binding.

5ICl cannot be binding in this case as jointly reducing tl and th by the same ε > 0 would improve

the principal’s payoff without harming any constraint.
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Now it is shown that the individual rationality constraint of θl has to be binding. If

not, decreasing tl and th by the same (small) ε > 0 would increase the principal’s payoff

without harming any binding constraint.

The next step is to show that IC l is not binding whenever qh > 0 with positive

probability. Since c(q, θl) > c(q, θh) for q > 0, a binding IC l would imply that ICh is

lax. But it was just shown that ICh has to bind.

Solving the binding constraints for th and tl and plugging them into the principal’s

objective gives:

W = f l
[∫

ql
S(ql)− c(ql, θl) dP l(ql)

]
+ fh

[∫
qh
S(qh)− c(qh, θh) dP h(qh)

]
+fh

[∫
ql
c(ql, θh)− c(ql, θl) dP l(ql)

]
With respect to P h, this term is clearly maximized by choosing P h(qh) such that all

probability is put on the first best decision qh∗.

If S is not concave and/or c not convex, the first best decision might not be unique.

Note that the prinipal can–even in this case–still maximize his payoff with a determinsitic

qh (i.e. putting all probability mass of P h on one of the first best decisions).

13



References

Akerlof, G. (1970). The market for “lemons”: Quality uncertainty and the market mech-

anism. Quarterly Journal of Economics 84 (3), 488–500.

Arnott, R. and J. E. Stiglitz (1988). Randomization with asymmetric information. The

RAND Journal of Economics 19 (3), pp. 344–362.

Bolton, P. and M. Dewatripont (2005). Contract theory. Cambridge: The MIT Press.

Brito, D., J. Hamilton, S. Slutsky, and J. Stiglitz (1995). Randomization in optimal

income tax schedules. Journal of Public Economics 56 (2), 189–223.

Laffont, J. and D. Martimort (2002). The theory of incentives: the principal-agent model.

Princeton University Press.

Mirrlees, J. (1971). An exploration in the theory of optimum income taxation. Review

of Economic Studies 38 (2), 175–208.

14



Supplementary material: Convexifying the domain

Another explanation for the optimality of random contracts which is sometimes men-

tioned is that they convexify the principal’s domain. In this supplementary material we

explain why this intuition cannot lead to optimality of random contracts in our quasi-

linear setting.

The idea is that–using lemma 1–the principal’s problem can be written as an opti-

mization over ql only. The incentive compatibility constraint of θh requires a minimum

rent uh(ql) that has to be given to type θh depending on the choice of ql. This minimum

rent is given by

uh(ql) = ul + c(ql, θl)− c(ql, θh) = c(ql, θl)− c(qh, θh)

where the second equality follows from θl’s individual rationality constraint. In figure 2,

this means that for all (ql, uh) combinations above the ICh-curve incentive compatibility

of θh is satisfied. As depicted in the figure, this set can be non-convex.6 The figure also

depicts an indifference curve of the principal which is tangent to the implementable set

at the points A and B.

ql

uh

A

B
ICh

W=const

qlA qlB

uhA

uhB

Figure 2: non-convex domain

At first, one could think that random contracts allow convex combinations between

the contracts A and B which are strictly preferred by the principal to A and B, i.e.

6A sufficient condition for this set to be convex is cqqθ ≤ 0. However, we argue that random contracts

cannot be optimal in our framework without an assumption on the sign of cqqθ.
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stochastic mechanisms allow to convexify the domain. However, this is not at all clear;

and we know from the analysis in the main text that it is actually not the case for

quasi-linear preferences.

As utilities are quasilinear, randomization in ti is pointless. From lemma 1, we know

that the decision of the high type is his first best decision. Hence, the only variable

we can randomize is ql. For illustration, let us check that randomizing between qlA and

qlB does not raise the principal’s utility. Take a convex combination putting probability

α on qlA and 1 − α on qlB. As IRl is binding, tl = αc(qlA, θ
l) + (1 − α)c(qlB, θ

l). We

know that the incentive compatibility constraint of θh will bind. Hence, the rent of θh is

uh = tl−αc(qlA, θh)−(1−α)c(qlB, θ
h) = α[c(qlA, θ

l)−c(qlA, θh)]+(1−α)[c(qlB, θ
l)−c(qlB, θh)].

The principal’s utility can then be written as

W = fh
(
S(qh)− c(qh, θh)− uh

)
+ f l

(
αS(qlA) + (1− α)S(qlB)− αc(qlA, θl)− (1− α)c(qlB, θ

l)
)

= α
{
f l(S(qlA)− c(qlA, θl)) + fh(S(qh)− c(qh, θh)− [c(qlA, θ

l)− c(qlA, θh)])
}

+ (1− α)
{
f l(S(qlB)− c(qlB, θl)) + fh(S(qh)− c(qh, θh)− [c(qlB, θ

l)− c(qlB, θh)])
}

= αWA + (1− α)WB

where WA (WB) is the principal’s utility of offering the deterministic contract that gives

qlA (qlB) to the θl agent. Since both A and B are on the same indifference curve for the

principal in figure 2, WA = WB = W which means that randomization does neither in-

nor decrease the principal’s utility. If, however, the determinsitic contracts A and B

would lead to different utility levels for the principal, the randomization would lead to a

worse outcome than the best deterministic contract.

The problem with the convexification intuition is the following. Indeed, the principal

prefers a deterministic contract with (ql, uh) = (1/2qlA + 1/2qlB, 1/2u
h
A + 1/2uhB) over the

deterministic contracts A or B but this is not a feasible (incentive compatible) contract.

The random version of this contract, however, cannot generate a higher utility for the

principal than the determinsitic contracts A or B.
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